![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1373 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31948. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1373.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1373.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1373.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1373.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1373.5 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
Ref | Expression |
---|---|
bnj1373 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1373.5 | . 2 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
2 | bnj1373.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | bnj1373.1 | . . . . . . . 8 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
4 | 3 | bnj1309 31908 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐵 → ∀𝑥 𝑓 ∈ 𝐵) |
5 | 2, 4 | bnj1307 31909 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 𝑓 ∈ 𝐶) |
6 | 5 | bnj1351 31715 | . . . . 5 ⊢ ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∀𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
7 | 6 | nf5i 2117 | . . . 4 ⊢ Ⅎ𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
8 | bnj1373.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
9 | sneq 4482 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
10 | bnj1318 31911 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅)) | |
11 | 9, 10 | uneq12d 4061 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
12 | 11 | eqeq2d 2805 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
13 | 12 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
14 | 8, 13 | syl5bb 284 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
15 | 7, 14 | sbciegf 3738 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
16 | 15 | elv 3442 | . 2 ⊢ ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
17 | 1, 16 | bitri 276 | 1 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {cab 2775 ∀wral 3105 ∃wrex 3106 Vcvv 3437 [wsbc 3706 ∪ cun 3857 ⊆ wss 3859 {csn 4472 〈cop 4478 dom cdm 5443 ↾ cres 5445 Fn wfn 6220 ‘cfv 6225 predc-bnj14 31575 trClc-bnj18 31581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-iun 4827 df-br 4963 df-bnj14 31576 df-bnj18 31582 |
This theorem is referenced by: bnj1374 31917 bnj1384 31918 bnj1398 31920 bnj1450 31936 bnj1489 31942 |
Copyright terms: Public domain | W3C validator |