Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1352 Structured version   Visualization version   GIF version

Theorem bnj1352 32087
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1352.1 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
bnj1352 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem bnj1352
StepHypRef Expression
1 ax-5 1904 . 2 (𝜑 → ∀𝑥𝜑)
2 bnj1352.1 . 2 (𝜓 → ∀𝑥𝜓)
31, 2hban 2301 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398  ∀wal 1528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778 This theorem is referenced by:  bnj594  32172  bnj1309  32282
 Copyright terms: Public domain W3C validator