Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Structured version   Visualization version   GIF version

Theorem bnj1309 35015
Description: Technical lemma for bnj60 35055. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
Assertion
Ref Expression
bnj1309 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑑   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑑)   𝐵(𝑥,𝑤,𝑑)   𝑅(𝑥,𝑤,𝑑)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 hbra1 3299 . . . 4 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 → ∀𝑥𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
32bnj1352 34820 . . 3 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) → ∀𝑥(𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
43hbab 2723 . 2 (𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} → ∀𝑥 𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)})
51, 4hbxfreq 2870 1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wss 3963   predc-bnj14 34681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060
This theorem is referenced by:  bnj1311  35017  bnj1373  35023  bnj1498  35054  bnj1525  35062  bnj1523  35064
  Copyright terms: Public domain W3C validator