Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Structured version   Visualization version   GIF version

Theorem bnj1309 31900
 Description: Technical lemma for bnj60 31940. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
Assertion
Ref Expression
bnj1309 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑑   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑑)   𝐵(𝑥,𝑤,𝑑)   𝑅(𝑥,𝑤,𝑑)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 hbra1 3186 . . . 4 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 → ∀𝑥𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
32bnj1352 31708 . . 3 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) → ∀𝑥(𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
43hbab 2785 . 2 (𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} → ∀𝑥 𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)})
51, 4hbxfreq 2911 1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396  ∀wal 1520   = wceq 1522   ∈ wcel 2080  {cab 2774  ∀wral 3104   ⊆ wss 3861   predc-bnj14 31567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-clab 2775  df-cleq 2787  df-clel 2862  df-ral 3109 This theorem is referenced by:  bnj1311  31902  bnj1373  31908  bnj1498  31939  bnj1525  31947  bnj1523  31949
 Copyright terms: Public domain W3C validator