| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1459 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1459.1 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) |
| bnj1459.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj1459 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1459.1 | . . 3 ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | bnj1459.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜒) |
| 4 | 3 | ralrimiva 3146 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3062 |
| This theorem is referenced by: bnj1501 35081 |
| Copyright terms: Public domain | W3C validator |