| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1454 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1454.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| bnj1454 | ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐴 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1454.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) |
| 3 | df-sbc 3737 | . . 3 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) |
| 5 | 2, 4 | bitr4id 290 | 1 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐴 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: bnj1452 35064 bnj1463 35067 |
| Copyright terms: Public domain | W3C validator |