Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1454 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1454.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
bnj1454 | ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐴 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1454.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) |
3 | df-sbc 3712 | . . 3 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) |
5 | 2, 4 | bitr4id 289 | 1 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐴 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: bnj1452 32932 bnj1463 32935 |
Copyright terms: Public domain | W3C validator |