Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   GIF version

Theorem bnj1501 32571
Description: Technical lemma for bnj1500 32572. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1501.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1501.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1501.4 𝐹 = 𝐶
bnj1501.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1501.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
bnj1501.7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
Assertion
Ref Expression
bnj1501 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑   𝜑,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1501
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
21simprbi 500 . . . . . . . 8 (𝜑𝑥𝐴)
3 bnj1501.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1501.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1501.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1501.4 . . . . . . . . . . 11 𝐹 = 𝐶
73, 4, 5, 6bnj60 32566 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
87fndmd 6442 . . . . . . . . 9 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
91, 8bnj832 32261 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
102, 9eleqtrrd 2855 . . . . . . 7 (𝜑𝑥 ∈ dom 𝐹)
116dmeqi 5749 . . . . . . . 8 dom 𝐹 = dom 𝐶
125bnj1317 32325 . . . . . . . . 9 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1312bnj1400 32339 . . . . . . . 8 dom 𝐶 = 𝑓𝐶 dom 𝑓
1411, 13eqtri 2781 . . . . . . 7 dom 𝐹 = 𝑓𝐶 dom 𝑓
1510, 14eleqtrdi 2862 . . . . . 6 (𝜑𝑥 𝑓𝐶 dom 𝑓)
1615bnj1405 32340 . . . . 5 (𝜑 → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
17 bnj1501.6 . . . . 5 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
1816, 17bnj1209 32300 . . . 4 (𝜑 → ∃𝑓𝜓)
195bnj1436 32343 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
2019bnj1299 32322 . . . . . . . . 9 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
21 fndm 6440 . . . . . . . . 9 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
2220, 21bnj31 32221 . . . . . . . 8 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
2317, 22bnj836 32263 . . . . . . 7 (𝜓 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
24 bnj1501.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
253, 4, 5, 6, 1, 17bnj1518 32568 . . . . . . 7 (𝜓 → ∀𝑑𝜓)
2623, 24, 25bnj1521 32355 . . . . . 6 (𝜓 → ∃𝑑𝜒)
277bnj930 32273 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴 → Fun 𝐹)
281, 27bnj832 32261 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
2917, 28bnj835 32262 . . . . . . . . . 10 (𝜓 → Fun 𝐹)
30 elssuni 4833 . . . . . . . . . . . 12 (𝑓𝐶𝑓 𝐶)
3130, 6sseqtrrdi 3945 . . . . . . . . . . 11 (𝑓𝐶𝑓𝐹)
3217, 31bnj836 32263 . . . . . . . . . 10 (𝜓𝑓𝐹)
3317simp3bi 1144 . . . . . . . . . 10 (𝜓𝑥 ∈ dom 𝑓)
3429, 32, 33bnj1502 32352 . . . . . . . . 9 (𝜓 → (𝐹𝑥) = (𝑓𝑥))
353, 4, 5bnj1514 32567 . . . . . . . . . . 11 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3617, 35bnj836 32263 . . . . . . . . . 10 (𝜓 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3736, 33bnj1294 32321 . . . . . . . . 9 (𝜓 → (𝑓𝑥) = (𝐺𝑌))
3834, 37eqtrd 2793 . . . . . . . 8 (𝜓 → (𝐹𝑥) = (𝐺𝑌))
3924, 38bnj835 32262 . . . . . . 7 (𝜒 → (𝐹𝑥) = (𝐺𝑌))
4024, 29bnj835 32262 . . . . . . . . . . 11 (𝜒 → Fun 𝐹)
4124, 32bnj835 32262 . . . . . . . . . . 11 (𝜒𝑓𝐹)
423bnj1517 32354 . . . . . . . . . . . . . 14 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4324, 42bnj836 32263 . . . . . . . . . . . . 13 (𝜒 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4424, 33bnj835 32262 . . . . . . . . . . . . . 14 (𝜒𝑥 ∈ dom 𝑓)
4524simp3bi 1144 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑓 = 𝑑)
4644, 45eleqtrd 2854 . . . . . . . . . . . . 13 (𝜒𝑥𝑑)
4743, 46bnj1294 32321 . . . . . . . . . . . 12 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4847, 45sseqtrrd 3935 . . . . . . . . . . 11 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑓)
4940, 41, 48bnj1503 32353 . . . . . . . . . 10 (𝜒 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
5049opeq2d 4773 . . . . . . . . 9 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5150, 4eqtr4di 2811 . . . . . . . 8 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
5251fveq2d 6666 . . . . . . 7 (𝜒 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
5339, 52eqtr4d 2796 . . . . . 6 (𝜒 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5426, 53bnj593 32248 . . . . 5 (𝜓 → ∃𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
553, 4, 5, 6bnj1519 32569 . . . . 5 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5654, 55bnj1397 32338 . . . 4 (𝜓 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5718, 56bnj593 32248 . . 3 (𝜑 → ∃𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
583, 4, 5, 6bnj1520 32570 . . 3 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5957, 58bnj1397 32338 . 2 (𝜑 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
601, 59bnj1459 32347 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  wss 3860  cop 4531   cuni 4801   ciun 4886  dom cdm 5527  cres 5529  Fun wfun 6333   Fn wfn 6334  cfv 6339   predc-bnj14 32190   FrSe w-bnj15 32194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-reg 9094  ax-inf2 9142
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7585  df-1o 8117  df-bnj17 32189  df-bnj14 32191  df-bnj13 32193  df-bnj15 32195  df-bnj18 32197  df-bnj19 32199
This theorem is referenced by:  bnj1500  32572
  Copyright terms: Public domain W3C validator