Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   GIF version

Theorem bnj1501 35079
Description: Technical lemma for bnj1500 35080. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1501.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1501.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1501.4 𝐹 = 𝐶
bnj1501.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1501.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
bnj1501.7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
Assertion
Ref Expression
bnj1501 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑   𝜑,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1501
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
21simprbi 496 . . . . . . . 8 (𝜑𝑥𝐴)
3 bnj1501.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1501.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1501.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1501.4 . . . . . . . . . . 11 𝐹 = 𝐶
73, 4, 5, 6bnj60 35074 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
87fndmd 6586 . . . . . . . . 9 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
91, 8bnj832 34770 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
102, 9eleqtrrd 2834 . . . . . . 7 (𝜑𝑥 ∈ dom 𝐹)
116dmeqi 5843 . . . . . . . 8 dom 𝐹 = dom 𝐶
125bnj1317 34833 . . . . . . . . 9 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1312bnj1400 34847 . . . . . . . 8 dom 𝐶 = 𝑓𝐶 dom 𝑓
1411, 13eqtri 2754 . . . . . . 7 dom 𝐹 = 𝑓𝐶 dom 𝑓
1510, 14eleqtrdi 2841 . . . . . 6 (𝜑𝑥 𝑓𝐶 dom 𝑓)
1615bnj1405 34848 . . . . 5 (𝜑 → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
17 bnj1501.6 . . . . 5 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
1816, 17bnj1209 34808 . . . 4 (𝜑 → ∃𝑓𝜓)
195bnj1436 34851 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
2019bnj1299 34830 . . . . . . . . 9 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
21 fndm 6584 . . . . . . . . 9 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
2220, 21bnj31 34731 . . . . . . . 8 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
2317, 22bnj836 34772 . . . . . . 7 (𝜓 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
24 bnj1501.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
253, 4, 5, 6, 1, 17bnj1518 35076 . . . . . . 7 (𝜓 → ∀𝑑𝜓)
2623, 24, 25bnj1521 34863 . . . . . 6 (𝜓 → ∃𝑑𝜒)
277fnfund 6582 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴 → Fun 𝐹)
281, 27bnj832 34770 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
2917, 28bnj835 34771 . . . . . . . . . 10 (𝜓 → Fun 𝐹)
30 elssuni 4887 . . . . . . . . . . . 12 (𝑓𝐶𝑓 𝐶)
3130, 6sseqtrrdi 3971 . . . . . . . . . . 11 (𝑓𝐶𝑓𝐹)
3217, 31bnj836 34772 . . . . . . . . . 10 (𝜓𝑓𝐹)
3317simp3bi 1147 . . . . . . . . . 10 (𝜓𝑥 ∈ dom 𝑓)
3429, 32, 33bnj1502 34860 . . . . . . . . 9 (𝜓 → (𝐹𝑥) = (𝑓𝑥))
353, 4, 5bnj1514 35075 . . . . . . . . . . 11 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3617, 35bnj836 34772 . . . . . . . . . 10 (𝜓 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3736, 33bnj1294 34829 . . . . . . . . 9 (𝜓 → (𝑓𝑥) = (𝐺𝑌))
3834, 37eqtrd 2766 . . . . . . . 8 (𝜓 → (𝐹𝑥) = (𝐺𝑌))
3924, 38bnj835 34771 . . . . . . 7 (𝜒 → (𝐹𝑥) = (𝐺𝑌))
4024, 29bnj835 34771 . . . . . . . . . . 11 (𝜒 → Fun 𝐹)
4124, 32bnj835 34771 . . . . . . . . . . 11 (𝜒𝑓𝐹)
423bnj1517 34862 . . . . . . . . . . . . . 14 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4324, 42bnj836 34772 . . . . . . . . . . . . 13 (𝜒 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4424, 33bnj835 34771 . . . . . . . . . . . . . 14 (𝜒𝑥 ∈ dom 𝑓)
4524simp3bi 1147 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑓 = 𝑑)
4644, 45eleqtrd 2833 . . . . . . . . . . . . 13 (𝜒𝑥𝑑)
4743, 46bnj1294 34829 . . . . . . . . . . . 12 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4847, 45sseqtrrd 3967 . . . . . . . . . . 11 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑓)
4940, 41, 48bnj1503 34861 . . . . . . . . . 10 (𝜒 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
5049opeq2d 4829 . . . . . . . . 9 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5150, 4eqtr4di 2784 . . . . . . . 8 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
5251fveq2d 6826 . . . . . . 7 (𝜒 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
5339, 52eqtr4d 2769 . . . . . 6 (𝜒 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5426, 53bnj593 34757 . . . . 5 (𝜓 → ∃𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
553, 4, 5, 6bnj1519 35077 . . . . 5 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5654, 55bnj1397 34846 . . . 4 (𝜓 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5718, 56bnj593 34757 . . 3 (𝜑 → ∃𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
583, 4, 5, 6bnj1520 35078 . . 3 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5957, 58bnj1397 34846 . 2 (𝜑 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
601, 59bnj1459 34855 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3897  cop 4579   cuni 4856   ciun 4939  dom cdm 5614  cres 5616  Fun wfun 6475   Fn wfn 6476  cfv 6481   predc-bnj14 34700   FrSe w-bnj15 34704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-bnj17 34699  df-bnj14 34701  df-bnj13 34703  df-bnj15 34705  df-bnj18 34707  df-bnj19 34709
This theorem is referenced by:  bnj1500  35080
  Copyright terms: Public domain W3C validator