Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   GIF version

Theorem bnj1501 32449
Description: Technical lemma for bnj1500 32450. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1501.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1501.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1501.4 𝐹 = 𝐶
bnj1501.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1501.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
bnj1501.7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
Assertion
Ref Expression
bnj1501 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑   𝜑,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1501
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
21simprbi 500 . . . . . . . 8 (𝜑𝑥𝐴)
3 bnj1501.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1501.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1501.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1501.4 . . . . . . . . . . 11 𝐹 = 𝐶
73, 4, 5, 6bnj60 32444 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
87fndmd 6427 . . . . . . . . 9 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
91, 8bnj832 32139 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
102, 9eleqtrrd 2893 . . . . . . 7 (𝜑𝑥 ∈ dom 𝐹)
116dmeqi 5737 . . . . . . . 8 dom 𝐹 = dom 𝐶
125bnj1317 32203 . . . . . . . . 9 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1312bnj1400 32217 . . . . . . . 8 dom 𝐶 = 𝑓𝐶 dom 𝑓
1411, 13eqtri 2821 . . . . . . 7 dom 𝐹 = 𝑓𝐶 dom 𝑓
1510, 14eleqtrdi 2900 . . . . . 6 (𝜑𝑥 𝑓𝐶 dom 𝑓)
1615bnj1405 32218 . . . . 5 (𝜑 → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
17 bnj1501.6 . . . . 5 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
1816, 17bnj1209 32178 . . . 4 (𝜑 → ∃𝑓𝜓)
195bnj1436 32221 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
2019bnj1299 32200 . . . . . . . . 9 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
21 fndm 6425 . . . . . . . . 9 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
2220, 21bnj31 32099 . . . . . . . 8 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
2317, 22bnj836 32141 . . . . . . 7 (𝜓 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
24 bnj1501.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
253, 4, 5, 6, 1, 17bnj1518 32446 . . . . . . 7 (𝜓 → ∀𝑑𝜓)
2623, 24, 25bnj1521 32233 . . . . . 6 (𝜓 → ∃𝑑𝜒)
277bnj930 32151 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴 → Fun 𝐹)
281, 27bnj832 32139 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
2917, 28bnj835 32140 . . . . . . . . . 10 (𝜓 → Fun 𝐹)
30 elssuni 4830 . . . . . . . . . . . 12 (𝑓𝐶𝑓 𝐶)
3130, 6sseqtrrdi 3966 . . . . . . . . . . 11 (𝑓𝐶𝑓𝐹)
3217, 31bnj836 32141 . . . . . . . . . 10 (𝜓𝑓𝐹)
3317simp3bi 1144 . . . . . . . . . 10 (𝜓𝑥 ∈ dom 𝑓)
3429, 32, 33bnj1502 32230 . . . . . . . . 9 (𝜓 → (𝐹𝑥) = (𝑓𝑥))
353, 4, 5bnj1514 32445 . . . . . . . . . . 11 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3617, 35bnj836 32141 . . . . . . . . . 10 (𝜓 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3736, 33bnj1294 32199 . . . . . . . . 9 (𝜓 → (𝑓𝑥) = (𝐺𝑌))
3834, 37eqtrd 2833 . . . . . . . 8 (𝜓 → (𝐹𝑥) = (𝐺𝑌))
3924, 38bnj835 32140 . . . . . . 7 (𝜒 → (𝐹𝑥) = (𝐺𝑌))
4024, 29bnj835 32140 . . . . . . . . . . 11 (𝜒 → Fun 𝐹)
4124, 32bnj835 32140 . . . . . . . . . . 11 (𝜒𝑓𝐹)
423bnj1517 32232 . . . . . . . . . . . . . 14 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4324, 42bnj836 32141 . . . . . . . . . . . . 13 (𝜒 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4424, 33bnj835 32140 . . . . . . . . . . . . . 14 (𝜒𝑥 ∈ dom 𝑓)
4524simp3bi 1144 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑓 = 𝑑)
4644, 45eleqtrd 2892 . . . . . . . . . . . . 13 (𝜒𝑥𝑑)
4743, 46bnj1294 32199 . . . . . . . . . . . 12 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4847, 45sseqtrrd 3956 . . . . . . . . . . 11 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑓)
4940, 41, 48bnj1503 32231 . . . . . . . . . 10 (𝜒 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
5049opeq2d 4772 . . . . . . . . 9 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5150, 4eqtr4di 2851 . . . . . . . 8 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
5251fveq2d 6649 . . . . . . 7 (𝜒 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
5339, 52eqtr4d 2836 . . . . . 6 (𝜒 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5426, 53bnj593 32126 . . . . 5 (𝜓 → ∃𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
553, 4, 5, 6bnj1519 32447 . . . . 5 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5654, 55bnj1397 32216 . . . 4 (𝜓 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5718, 56bnj593 32126 . . 3 (𝜑 → ∃𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
583, 4, 5, 6bnj1520 32448 . . 3 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5957, 58bnj1397 32216 . 2 (𝜑 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
601, 59bnj1459 32225 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881  cop 4531   cuni 4800   ciun 4881  dom cdm 5519  cres 5521  Fun wfun 6318   Fn wfn 6319  cfv 6324   predc-bnj14 32068   FrSe w-bnj15 32072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-bnj17 32067  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073  df-bnj18 32075  df-bnj19 32077
This theorem is referenced by:  bnj1500  32450
  Copyright terms: Public domain W3C validator