Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1464 Structured version   Visualization version   GIF version

Theorem bnj1464 32173
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1464.1 (𝜓 → ∀𝑥𝜓)
bnj1464.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bnj1464 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bnj1464
StepHypRef Expression
1 bnj1464.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2151 . 2 𝑥𝜓
3 bnj1464.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3sbciegf 3795 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536   = wceq 1538   ∈ wcel 2115  [wsbc 3758 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-sbc 3759 This theorem is referenced by:  bnj1465  32174  bnj1468  32175
 Copyright terms: Public domain W3C validator