| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj228 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj228.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| bnj228 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj228.1 | . . 3 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | rsp 3233 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3051 |
| This theorem is referenced by: bnj229 34857 bnj999 34931 |
| Copyright terms: Public domain | W3C validator |