Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj228 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj228.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj228 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj228.1 | . . 3 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | rsp 3131 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | impcom 408 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 |
This theorem is referenced by: bnj229 32864 bnj999 32938 |
Copyright terms: Public domain | W3C validator |