Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj228 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj228.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj228 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj228.1 | . . 3 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | rsp 3129 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | impcom 407 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 |
This theorem is referenced by: bnj229 32764 bnj999 32838 |
Copyright terms: Public domain | W3C validator |