![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj519 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj519.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnj519 | ⊢ (𝐵 ∈ V → Fun {⟨𝐴, 𝐵⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj519.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | funsng 6600 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {⟨𝐴, 𝐵⟩}) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐵 ∈ V → Fun {⟨𝐴, 𝐵⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 {csn 4629 ⟨cop 4635 Fun wfun 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6546 |
This theorem is referenced by: bnj97 33877 bnj535 33901 |
Copyright terms: Public domain | W3C validator |