Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj229 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj517 32385. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj229.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj229 | ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj213 32382 | . . 3 ⊢ pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 | |
2 | 1 | bnj226 32232 | . 2 ⊢ ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
3 | bnj229.1 | . . . . . . . 8 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | 3 | bnj222 32383 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
5 | 4 | bnj228 32233 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝜓) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
6 | 5 | adantl 485 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
7 | eleq1 2839 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → (suc 𝑚 ∈ 𝑁 ↔ 𝑛 ∈ 𝑁)) | |
8 | fveqeq2 6667 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → ((𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) | |
9 | 7, 8 | imbi12d 348 | . . . . . 6 ⊢ (suc 𝑚 = 𝑛 → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
10 | 9 | adantr 484 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
11 | 6, 10 | mpbid 235 | . . . 4 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
12 | 11 | 3impb 1112 | . . 3 ⊢ ((suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
13 | 12 | impcom 411 | . 2 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) |
14 | 2, 13 | bnj1262 32310 | 1 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3858 ∪ ciun 4883 suc csuc 6171 ‘cfv 6335 ωcom 7579 predc-bnj14 32186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-suc 6175 df-iota 6294 df-fv 6343 df-bnj14 32187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |