Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj229 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj517 32765. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj229.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj229 | ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj213 32762 | . . 3 ⊢ pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 | |
2 | 1 | bnj226 32613 | . 2 ⊢ ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
3 | bnj229.1 | . . . . . . . 8 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | 3 | bnj222 32763 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
5 | 4 | bnj228 32614 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝜓) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
7 | eleq1 2826 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → (suc 𝑚 ∈ 𝑁 ↔ 𝑛 ∈ 𝑁)) | |
8 | fveqeq2 6765 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → ((𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) | |
9 | 7, 8 | imbi12d 344 | . . . . . 6 ⊢ (suc 𝑚 = 𝑛 → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
11 | 6, 10 | mpbid 231 | . . . 4 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
12 | 11 | 3impb 1113 | . . 3 ⊢ ((suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
13 | 12 | impcom 407 | . 2 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) |
14 | 2, 13 | bnj1262 32690 | 1 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ ciun 4921 suc csuc 6253 ‘cfv 6418 ωcom 7687 predc-bnj14 32567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-suc 6257 df-iota 6376 df-fv 6426 df-bnj14 32568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |