Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj229 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj517 32865. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj229.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj229 | ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj213 32862 | . . 3 ⊢ pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 | |
2 | 1 | bnj226 32713 | . 2 ⊢ ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
3 | bnj229.1 | . . . . . . . 8 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | 3 | bnj222 32863 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
5 | 4 | bnj228 32714 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝜓) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
7 | eleq1 2826 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → (suc 𝑚 ∈ 𝑁 ↔ 𝑛 ∈ 𝑁)) | |
8 | fveqeq2 6783 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → ((𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) | |
9 | 7, 8 | imbi12d 345 | . . . . . 6 ⊢ (suc 𝑚 = 𝑛 → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
11 | 6, 10 | mpbid 231 | . . . 4 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
12 | 11 | 3impb 1114 | . . 3 ⊢ ((suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
13 | 12 | impcom 408 | . 2 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) |
14 | 2, 13 | bnj1262 32790 | 1 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ ciun 4924 suc csuc 6268 ‘cfv 6433 ωcom 7712 predc-bnj14 32667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-suc 6272 df-iota 6391 df-fv 6441 df-bnj14 32668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |