Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj229 Structured version   Visualization version   GIF version

Theorem bnj229 34208
Description: Technical lemma for bnj517 34209. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj229.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj229 ((𝑛𝑁 ∧ (suc 𝑚 = 𝑛𝑚 ∈ ω ∧ 𝜓)) → (𝐹𝑛) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑦   𝑖,𝐹,𝑚,𝑦   𝑖,𝑁,𝑚   𝑅,𝑖,𝑚
Allowed substitution hints:   𝜓(𝑦,𝑖,𝑚,𝑛)   𝐴(𝑛)   𝑅(𝑦,𝑛)   𝐹(𝑛)   𝑁(𝑦,𝑛)

Proof of Theorem bnj229
StepHypRef Expression
1 bnj213 34206 . . 3 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
21bnj226 34058 . 2 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
3 bnj229.1 . . . . . . . 8 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
43bnj222 34207 . . . . . . 7 (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
54bnj228 34059 . . . . . 6 ((𝑚 ∈ ω ∧ 𝜓) → (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
65adantl 481 . . . . 5 ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
7 eleq1 2820 . . . . . . 7 (suc 𝑚 = 𝑛 → (suc 𝑚𝑁𝑛𝑁))
8 fveqeq2 6900 . . . . . . 7 (suc 𝑚 = 𝑛 → ((𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
97, 8imbi12d 344 . . . . . 6 (suc 𝑚 = 𝑛 → ((suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛𝑁 → (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅))))
109adantr 480 . . . . 5 ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → ((suc 𝑚𝑁 → (𝐹‘suc 𝑚) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛𝑁 → (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅))))
116, 10mpbid 231 . . . 4 ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (𝑛𝑁 → (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
12113impb 1114 . . 3 ((suc 𝑚 = 𝑛𝑚 ∈ ω ∧ 𝜓) → (𝑛𝑁 → (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅)))
1312impcom 407 . 2 ((𝑛𝑁 ∧ (suc 𝑚 = 𝑛𝑚 ∈ ω ∧ 𝜓)) → (𝐹𝑛) = 𝑦 ∈ (𝐹𝑚) pred(𝑦, 𝐴, 𝑅))
142, 13bnj1262 34134 1 ((𝑛𝑁 ∧ (suc 𝑚 = 𝑛𝑚 ∈ ω ∧ 𝜓)) → (𝐹𝑛) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wss 3948   ciun 4997  suc csuc 6366  cfv 6543  ωcom 7859   predc-bnj14 34012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-suc 6370  df-iota 6495  df-fv 6551  df-bnj14 34013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator