Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj226 Structured version   Visualization version   GIF version

Theorem bnj226 31652
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj226.1 𝐵𝐶
Assertion
Ref Expression
bnj226 𝑥𝐴 𝐵𝐶
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem bnj226
StepHypRef Expression
1 bnj226.1 . . 3 𝐵𝐶
21rgenw 3100 . 2 𝑥𝐴 𝐵𝐶
3 iunss 4836 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3mpbir 223 1 𝑥𝐴 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:  wral 3088  wss 3831   ciun 4793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-in 3838  df-ss 3845  df-iun 4795
This theorem is referenced by:  bnj229  31803  bnj1128  31907  bnj1145  31910
  Copyright terms: Public domain W3C validator