![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj226 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
bnj226 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj226.1 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
2 | 1 | rgenw 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
3 | iunss 5068 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3067 ⊆ wss 3976 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-ss 3993 df-iun 5017 |
This theorem is referenced by: bnj229 34860 bnj1128 34966 bnj1145 34969 |
Copyright terms: Public domain | W3C validator |