| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj226 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| bnj226 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj226.1 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | 1 | rgenw 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
| 3 | iunss 5017 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3046 ⊆ wss 3922 ∪ ciun 4963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-ss 3939 df-iun 4965 |
| This theorem is referenced by: bnj229 34882 bnj1128 34988 bnj1145 34991 |
| Copyright terms: Public domain | W3C validator |