Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj226 Structured version   Visualization version   GIF version

Theorem bnj226 32713
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj226.1 𝐵𝐶
Assertion
Ref Expression
bnj226 𝑥𝐴 𝐵𝐶
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem bnj226
StepHypRef Expression
1 bnj226.1 . . 3 𝐵𝐶
21rgenw 3076 . 2 𝑥𝐴 𝐵𝐶
3 iunss 4975 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3mpbir 230 1 𝑥𝐴 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:  wral 3064  wss 3887   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iun 4926
This theorem is referenced by:  bnj229  32864  bnj1128  32970  bnj1145  32973
  Copyright terms: Public domain W3C validator