Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj226 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
bnj226 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj226.1 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
2 | 1 | rgenw 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
3 | iunss 4975 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3064 ⊆ wss 3887 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: bnj229 32864 bnj1128 32970 bnj1145 32973 |
Copyright terms: Public domain | W3C validator |