Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj226 Structured version   Visualization version   GIF version

Theorem bnj226 34710
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj226.1 𝐵𝐶
Assertion
Ref Expression
bnj226 𝑥𝐴 𝐵𝐶
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem bnj226
StepHypRef Expression
1 bnj226.1 . . 3 𝐵𝐶
21rgenw 3071 . 2 𝑥𝐴 𝐵𝐶
3 iunss 5068 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3mpbir 231 1 𝑥𝐴 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:  wral 3067  wss 3976   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-ss 3993  df-iun 5017
This theorem is referenced by:  bnj229  34860  bnj1128  34966  bnj1145  34969
  Copyright terms: Public domain W3C validator