![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj226 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj226.1 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
bnj226 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj226.1 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
2 | 1 | rgenw 3100 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
3 | iunss 4836 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | mpbir 223 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3088 ⊆ wss 3831 ∪ ciun 4793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-in 3838 df-ss 3845 df-iun 4795 |
This theorem is referenced by: bnj229 31803 bnj1128 31907 bnj1145 31910 |
Copyright terms: Public domain | W3C validator |