![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) (Revised by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3com23 1126 sbciegft 3842 oacan 8604 omlimcl 8634 nnacan 8684 dif1en 9226 dif1enOLD 9228 unfi 9238 en3lplem2 9682 le2tri3i 11420 ltaddsublt 11917 div12 11971 lemul12b 12151 zdivadd 12714 zdivmul 12715 elfz 13573 fzmmmeqm 13617 fzrev 13647 modmulnn 13940 digit2 14285 digit1 14286 faclbnd5 14347 hashfundm 14491 absdiflt 15366 absdifle 15367 dvds0lem 16315 dvdsmulc 16332 dvds2add 16338 dvds2sub 16339 dvdstr 16342 lcmdvds 16655 pospropd 18397 fmfil 23973 elfm 23976 psmettri2 24340 xmettri2 24371 stdbdmetval 24548 nmf2 24627 isclmi0 25150 iscvsi 25181 brbtwn 28932 colinearalglem3 28941 colinearalg 28943 isvciOLD 30612 nvtri 30702 nmooge0 30799 his7 31122 his2sub2 31125 braadd 31977 bramul 31978 cnlnadjlem2 32100 pjimai 32208 atcvati 32418 mdsymlem5 32439 bnj240 34675 bnj1189 34985 cusgredgex 35089 colineardim1 36025 ftc1anclem6 37658 brcnvrabga 38298 oaord3 43254 omord2com 43264 uun123p3 44782 stoweidlem2 45923 sigarperm 46781 leaddsuble 47212 |
Copyright terms: Public domain | W3C validator |