Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) (Revised by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1121 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3com13 1122 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3com23 1124 oacan 8341 omlimcl 8371 nnacan 8421 dif1en 8907 unfi 8917 en3lplem2 9301 le2tri3i 11035 ltaddsublt 11532 div12 11585 lemul12b 11762 zdivadd 12321 zdivmul 12322 elfz 13174 fzmmmeqm 13218 fzrev 13248 modmulnn 13537 digit2 13879 digit1 13880 faclbnd5 13940 absdiflt 14957 absdifle 14958 dvds0lem 15904 dvdsmulc 15921 dvds2add 15927 dvds2sub 15928 dvdstr 15931 lcmdvds 16241 pospropd 17960 fmfil 23003 elfm 23006 psmettri2 23370 xmettri2 23401 stdbdmetval 23576 nmf2 23655 isclmi0 24167 iscvsi 24198 brbtwn 27170 colinearalglem3 27179 colinearalg 27181 isvciOLD 28843 nvtri 28933 nmooge0 29030 his7 29353 his2sub2 29356 braadd 30208 bramul 30209 cnlnadjlem2 30331 pjimai 30439 atcvati 30649 mdsymlem5 30670 bnj240 32578 bnj1189 32889 hashfundm 32974 cusgredgex 32983 colineardim1 34290 ftc1anclem6 35782 brcnvrabga 36404 uun123p3 42320 stoweidlem2 43433 sigarperm 44263 leaddsuble 44677 |
Copyright terms: Public domain | W3C validator |