![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) (Revised by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3com23 1126 oacan 8547 omlimcl 8577 nnacan 8627 dif1en 9159 dif1enOLD 9161 unfi 9171 en3lplem2 9607 le2tri3i 11343 ltaddsublt 11840 div12 11893 lemul12b 12070 zdivadd 12632 zdivmul 12633 elfz 13489 fzmmmeqm 13533 fzrev 13563 modmulnn 13853 digit2 14198 digit1 14199 faclbnd5 14257 hashfundm 14401 absdiflt 15263 absdifle 15264 dvds0lem 16209 dvdsmulc 16226 dvds2add 16232 dvds2sub 16233 dvdstr 16236 lcmdvds 16544 pospropd 18279 fmfil 23447 elfm 23450 psmettri2 23814 xmettri2 23845 stdbdmetval 24022 nmf2 24101 isclmi0 24613 iscvsi 24644 brbtwn 28154 colinearalglem3 28163 colinearalg 28165 isvciOLD 29828 nvtri 29918 nmooge0 30015 his7 30338 his2sub2 30341 braadd 31193 bramul 31194 cnlnadjlem2 31316 pjimai 31424 atcvati 31634 mdsymlem5 31655 bnj240 33705 bnj1189 34015 cusgredgex 34107 colineardim1 35028 ftc1anclem6 36561 brcnvrabga 37206 oaord3 42032 omord2com 42042 uun123p3 43562 stoweidlem2 44708 sigarperm 45566 leaddsuble 45995 |
Copyright terms: Public domain | W3C validator |