Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) (Revised by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1122 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3com13 1123 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3com23 1125 oacan 8379 omlimcl 8409 nnacan 8459 dif1en 8945 unfi 8955 en3lplem2 9371 le2tri3i 11105 ltaddsublt 11602 div12 11655 lemul12b 11832 zdivadd 12391 zdivmul 12392 elfz 13245 fzmmmeqm 13289 fzrev 13319 modmulnn 13609 digit2 13951 digit1 13952 faclbnd5 14012 absdiflt 15029 absdifle 15030 dvds0lem 15976 dvdsmulc 15993 dvds2add 15999 dvds2sub 16000 dvdstr 16003 lcmdvds 16313 pospropd 18045 fmfil 23095 elfm 23098 psmettri2 23462 xmettri2 23493 stdbdmetval 23670 nmf2 23749 isclmi0 24261 iscvsi 24292 brbtwn 27267 colinearalglem3 27276 colinearalg 27278 isvciOLD 28942 nvtri 29032 nmooge0 29129 his7 29452 his2sub2 29455 braadd 30307 bramul 30308 cnlnadjlem2 30430 pjimai 30538 atcvati 30748 mdsymlem5 30769 bnj240 32678 bnj1189 32989 hashfundm 33074 cusgredgex 33083 colineardim1 34363 ftc1anclem6 35855 brcnvrabga 36477 uun123p3 42431 stoweidlem2 43543 sigarperm 44376 leaddsuble 44789 |
Copyright terms: Public domain | W3C validator |