| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3773 oacan 8458 omlimcl 8488 nnacan 8538 dif1en 9066 unfi 9075 en3lplem2 9498 le2tri3i 11238 ltaddsublt 11739 div12 11793 lemul12b 11973 zdivadd 12539 zdivmul 12540 elfz 13408 fzmmmeqm 13452 fzrev 13482 modmulnn 13788 digit2 14138 digit1 14139 faclbnd5 14200 hashfundm 14344 absdiflt 15220 absdifle 15221 dvds0lem 16172 dvdsmulc 16189 dvds2add 16196 dvds2sub 16197 dvdstr 16200 lcmdvds 16514 pospropd 18226 fmfil 23854 elfm 23857 psmettri2 24219 xmettri2 24250 stdbdmetval 24424 nmf2 24503 isclmi0 25020 iscvsi 25051 brbtwn 28872 colinearalglem3 28881 colinearalg 28883 isvciOLD 30552 nvtri 30642 nmooge0 30739 his7 31062 his2sub2 31065 braadd 31917 bramul 31918 cnlnadjlem2 32040 pjimai 32148 atcvati 32358 mdsymlem5 32379 bnj240 34703 bnj1189 35013 cusgredgex 35158 colineardim1 36095 ftc1anclem6 37738 brcnvrabga 38370 oaord3 43325 omord2com 43335 uun123p3 44843 stoweidlem2 46040 sigarperm 46898 leaddsuble 47328 |
| Copyright terms: Public domain | W3C validator |