| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3781 oacan 8473 omlimcl 8503 nnacan 8553 dif1en 9084 dif1enOLD 9086 unfi 9095 en3lplem2 9528 le2tri3i 11264 ltaddsublt 11765 div12 11819 lemul12b 11999 zdivadd 12565 zdivmul 12566 elfz 13434 fzmmmeqm 13478 fzrev 13508 modmulnn 13811 digit2 14161 digit1 14162 faclbnd5 14223 hashfundm 14367 absdiflt 15243 absdifle 15244 dvds0lem 16195 dvdsmulc 16212 dvds2add 16219 dvds2sub 16220 dvdstr 16223 lcmdvds 16537 pospropd 18249 fmfil 23847 elfm 23850 psmettri2 24213 xmettri2 24244 stdbdmetval 24418 nmf2 24497 isclmi0 25014 iscvsi 25045 brbtwn 28862 colinearalglem3 28871 colinearalg 28873 isvciOLD 30542 nvtri 30632 nmooge0 30729 his7 31052 his2sub2 31055 braadd 31907 bramul 31908 cnlnadjlem2 32030 pjimai 32138 atcvati 32348 mdsymlem5 32369 bnj240 34668 bnj1189 34978 cusgredgex 35097 colineardim1 36037 ftc1anclem6 37680 brcnvrabga 38312 oaord3 43268 omord2com 43278 uun123p3 44787 stoweidlem2 45987 sigarperm 46845 leaddsuble 47285 |
| Copyright terms: Public domain | W3C validator |