| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3802 oacan 8560 omlimcl 8590 nnacan 8640 dif1en 9174 dif1enOLD 9176 unfi 9185 en3lplem2 9627 le2tri3i 11365 ltaddsublt 11864 div12 11918 lemul12b 12098 zdivadd 12664 zdivmul 12665 elfz 13530 fzmmmeqm 13574 fzrev 13604 modmulnn 13906 digit2 14254 digit1 14255 faclbnd5 14316 hashfundm 14460 absdiflt 15336 absdifle 15337 dvds0lem 16286 dvdsmulc 16303 dvds2add 16309 dvds2sub 16310 dvdstr 16313 lcmdvds 16627 pospropd 18337 fmfil 23882 elfm 23885 psmettri2 24248 xmettri2 24279 stdbdmetval 24453 nmf2 24532 isclmi0 25049 iscvsi 25080 brbtwn 28878 colinearalglem3 28887 colinearalg 28889 isvciOLD 30561 nvtri 30651 nmooge0 30748 his7 31071 his2sub2 31074 braadd 31926 bramul 31927 cnlnadjlem2 32049 pjimai 32157 atcvati 32367 mdsymlem5 32388 bnj240 34730 bnj1189 35040 cusgredgex 35144 colineardim1 36079 ftc1anclem6 37722 brcnvrabga 38360 oaord3 43316 omord2com 43326 uun123p3 44835 stoweidlem2 46031 sigarperm 46889 leaddsuble 47326 |
| Copyright terms: Public domain | W3C validator |