| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3793 oacan 8515 omlimcl 8545 nnacan 8595 dif1en 9130 dif1enOLD 9132 unfi 9141 en3lplem2 9573 le2tri3i 11311 ltaddsublt 11812 div12 11866 lemul12b 12046 zdivadd 12612 zdivmul 12613 elfz 13481 fzmmmeqm 13525 fzrev 13555 modmulnn 13858 digit2 14208 digit1 14209 faclbnd5 14270 hashfundm 14414 absdiflt 15291 absdifle 15292 dvds0lem 16243 dvdsmulc 16260 dvds2add 16267 dvds2sub 16268 dvdstr 16271 lcmdvds 16585 pospropd 18293 fmfil 23838 elfm 23841 psmettri2 24204 xmettri2 24235 stdbdmetval 24409 nmf2 24488 isclmi0 25005 iscvsi 25036 brbtwn 28833 colinearalglem3 28842 colinearalg 28844 isvciOLD 30516 nvtri 30606 nmooge0 30703 his7 31026 his2sub2 31029 braadd 31881 bramul 31882 cnlnadjlem2 32004 pjimai 32112 atcvati 32322 mdsymlem5 32343 bnj240 34696 bnj1189 35006 cusgredgex 35116 colineardim1 36056 ftc1anclem6 37699 brcnvrabga 38331 oaord3 43288 omord2com 43298 uun123p3 44807 stoweidlem2 46007 sigarperm 46865 leaddsuble 47302 |
| Copyright terms: Public domain | W3C validator |