| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3790 oacan 8512 omlimcl 8542 nnacan 8592 dif1en 9124 dif1enOLD 9126 unfi 9135 en3lplem2 9566 le2tri3i 11304 ltaddsublt 11805 div12 11859 lemul12b 12039 zdivadd 12605 zdivmul 12606 elfz 13474 fzmmmeqm 13518 fzrev 13548 modmulnn 13851 digit2 14201 digit1 14202 faclbnd5 14263 hashfundm 14407 absdiflt 15284 absdifle 15285 dvds0lem 16236 dvdsmulc 16253 dvds2add 16260 dvds2sub 16261 dvdstr 16264 lcmdvds 16578 pospropd 18286 fmfil 23831 elfm 23834 psmettri2 24197 xmettri2 24228 stdbdmetval 24402 nmf2 24481 isclmi0 24998 iscvsi 25029 brbtwn 28826 colinearalglem3 28835 colinearalg 28837 isvciOLD 30509 nvtri 30599 nmooge0 30696 his7 31019 his2sub2 31022 braadd 31874 bramul 31875 cnlnadjlem2 31997 pjimai 32105 atcvati 32315 mdsymlem5 32336 bnj240 34689 bnj1189 34999 cusgredgex 35109 colineardim1 36049 ftc1anclem6 37692 brcnvrabga 38324 oaord3 43281 omord2com 43291 uun123p3 44800 stoweidlem2 46000 sigarperm 46858 leaddsuble 47298 |
| Copyright terms: Public domain | W3C validator |