| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) Theorems shortened and reordered. (Revised by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com12 1123 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com23 1126 sbciegft 3774 oacan 8472 omlimcl 8502 nnacan 8552 dif1en 9082 unfi 9091 en3lplem2 9514 le2tri3i 11254 ltaddsublt 11755 div12 11809 lemul12b 11989 zdivadd 12554 zdivmul 12555 elfz 13420 fzmmmeqm 13464 fzrev 13494 modmulnn 13800 digit2 14150 digit1 14151 faclbnd5 14212 hashfundm 14356 absdiflt 15232 absdifle 15233 dvds0lem 16184 dvdsmulc 16201 dvds2add 16208 dvds2sub 16209 dvdstr 16212 lcmdvds 16526 pospropd 18239 fmfil 23879 elfm 23882 psmettri2 24244 xmettri2 24275 stdbdmetval 24449 nmf2 24528 isclmi0 25045 iscvsi 25076 brbtwn 28898 colinearalglem3 28907 colinearalg 28909 isvciOLD 30581 nvtri 30671 nmooge0 30768 his7 31091 his2sub2 31094 braadd 31946 bramul 31947 cnlnadjlem2 32069 pjimai 32177 atcvati 32387 mdsymlem5 32408 bnj240 34783 bnj1189 35093 cusgredgex 35238 colineardim1 36177 ftc1anclem6 37811 brcnvrabga 38447 oaord3 43449 omord2com 43459 uun123p3 44967 stoweidlem2 46162 sigarperm 47020 leaddsuble 47459 |
| Copyright terms: Public domain | W3C validator |