![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3comr | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) (Revised by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1114 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3com13 1115 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1073 |
This theorem is referenced by: 3com23 1117 oacan 7912 omlimcl 7942 nnacan 7992 en3lplem2 8805 le2tri3i 10506 ltaddsublt 11002 div12 11055 lemul12b 11234 zdivadd 11800 zdivmul 11801 elfz 12649 fzmmmeqm 12691 fzrev 12721 modmulnn 13007 digit2 13316 digit1 13317 faclbnd5 13403 swrdccatin2 13856 absdiflt 14464 absdifle 14465 dvds0lem 15399 dvdsmulc 15416 dvds2add 15422 dvds2sub 15423 dvdstr 15425 lcmdvds 15727 pospropd 17520 fmfil 22156 elfm 22159 psmettri2 22522 xmettri2 22553 stdbdmetval 22727 nmf2 22805 isclmi0 23305 iscvsi 23336 brbtwn 26248 colinearalglem3 26257 colinearalg 26259 isvciOLD 28007 nvtri 28097 nmooge0 28194 his7 28519 his2sub2 28522 braadd 29376 bramul 29377 cnlnadjlem2 29499 pjimai 29607 atcvati 29817 mdsymlem5 29838 bnj240 31367 bnj1189 31676 colineardim1 32757 ftc1anclem6 34099 brcnvrabga 34722 uun123p3 39962 stoweidlem2 41128 sigarperm 41958 leaddsuble 42321 |
Copyright terms: Public domain | W3C validator |