Proof of Theorem bnj580
Step | Hyp | Ref
| Expression |
1 | | bnj580.3 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
2 | 1 | simp1bi 1143 |
. . . . . 6
⊢ (𝜒 → 𝑓 Fn 𝑛) |
3 | | bnj580.4 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
4 | | bnj580.5 |
. . . . . . . 8
⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
5 | | bnj580.6 |
. . . . . . . 8
⊢ (𝜒′ ↔ [𝑔 / 𝑓]𝜒) |
6 | 1, 3, 4, 5 | bnj581 32788 |
. . . . . . 7
⊢ (𝜒′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
7 | 6 | simp1bi 1143 |
. . . . . 6
⊢ (𝜒′ → 𝑔 Fn 𝑛) |
8 | 2, 7 | bnj240 32578 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛)) |
9 | | bnj580.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
10 | | bnj580.2 |
. . . . . . . . . . . . 13
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
11 | | bnj580.7 |
. . . . . . . . . . . . 13
⊢ 𝐷 = (ω ∖
{∅}) |
12 | 3, 9 | bnj154 32758 |
. . . . . . . . . . . . 13
⊢ (𝜑′ ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
13 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
14 | 10, 4, 13 | bnj540 32772 |
. . . . . . . . . . . . 13
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
15 | | bnj580.8 |
. . . . . . . . . . . . 13
⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
16 | 15 | bnj591 32791 |
. . . . . . . . . . . . 13
⊢
([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
17 | | bnj580.9 |
. . . . . . . . . . . . 13
⊢ (𝜏 ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]𝜃)) |
18 | 9, 10, 1, 11, 12, 14, 6, 15, 16, 17 | bnj594 32792 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
19 | 18 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑛 → (𝜏 → 𝜃)) |
20 | 19 | rgen 3073 |
. . . . . . . . . 10
⊢
∀𝑗 ∈
𝑛 (𝜏 → 𝜃) |
21 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑛 ∈ V |
22 | 21, 17 | bnj110 32738 |
. . . . . . . . . 10
⊢ (( E Fr
𝑛 ∧ ∀𝑗 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑗 ∈ 𝑛 𝜃) |
23 | 20, 22 | mpan2 687 |
. . . . . . . . 9
⊢ ( E Fr
𝑛 → ∀𝑗 ∈ 𝑛 𝜃) |
24 | 15 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝑛 𝜃 ↔ ∀𝑗 ∈ 𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
25 | 23, 24 | sylib 217 |
. . . . . . . 8
⊢ ( E Fr
𝑛 → ∀𝑗 ∈ 𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
26 | 25 | r19.21be 3133 |
. . . . . . 7
⊢
∀𝑗 ∈
𝑛 ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
27 | 11 | bnj923 32648 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
28 | | nnord 7695 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → Ord 𝑛) |
29 | | ordfr 6266 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑛 → E Fr 𝑛) |
30 | 27, 28, 29 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
31 | 30 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → E Fr 𝑛) |
32 | 31 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) ↔ ( E Fr 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′))) |
33 | 32 | imbi1i 349 |
. . . . . . . . 9
⊢ (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ (( E Fr 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′)) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
34 | | impexp 450 |
. . . . . . . . 9
⊢ ((( E Fr
𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
35 | 33, 34 | bitri 274 |
. . . . . . . 8
⊢ (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
36 | 35 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
37 | 26, 36 | mpbir 230 |
. . . . . 6
⊢
∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) |
38 | | r19.21v 3100 |
. . . . . 6
⊢
(∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗))) |
39 | 37, 38 | mpbi 229 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗)) |
40 | | eqfnfv 6891 |
. . . . . 6
⊢ ((𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛) → (𝑓 = 𝑔 ↔ ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗))) |
41 | 40 | biimprd 247 |
. . . . 5
⊢ ((𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛) → (∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗) → 𝑓 = 𝑔)) |
42 | 8, 39, 41 | sylc 65 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) |
43 | 42 | 3expib 1120 |
. . 3
⊢ (𝑛 ∈ 𝐷 → ((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
44 | 43 | alrimivv 1932 |
. 2
⊢ (𝑛 ∈ 𝐷 → ∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
45 | | sbsbc 3715 |
. . . . . 6
⊢ ([𝑔 / 𝑓]𝜒 ↔ [𝑔 / 𝑓]𝜒) |
46 | 45 | anbi2i 622 |
. . . . 5
⊢ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) ↔ (𝜒 ∧ [𝑔 / 𝑓]𝜒)) |
47 | 46 | imbi1i 349 |
. . . 4
⊢ (((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔) ↔ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
48 | 47 | 2albii 1824 |
. . 3
⊢
(∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔) ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
49 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑔𝜒 |
50 | 49 | mo3 2564 |
. . 3
⊢
(∃*𝑓𝜒 ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
51 | 5 | anbi2i 622 |
. . . . 5
⊢ ((𝜒 ∧ 𝜒′) ↔ (𝜒 ∧ [𝑔 / 𝑓]𝜒)) |
52 | 51 | imbi1i 349 |
. . . 4
⊢ (((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) ↔ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
53 | 52 | 2albii 1824 |
. . 3
⊢
(∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
54 | 48, 50, 53 | 3bitr4i 302 |
. 2
⊢
(∃*𝑓𝜒 ↔ ∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
55 | 44, 54 | sylibr 233 |
1
⊢ (𝑛 ∈ 𝐷 → ∃*𝑓𝜒) |