Proof of Theorem bnj580
| Step | Hyp | Ref
| Expression |
| 1 | | bnj580.3 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 2 | 1 | simp1bi 1146 |
. . . . . 6
⊢ (𝜒 → 𝑓 Fn 𝑛) |
| 3 | | bnj580.4 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
| 4 | | bnj580.5 |
. . . . . . . 8
⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
| 5 | | bnj580.6 |
. . . . . . . 8
⊢ (𝜒′ ↔ [𝑔 / 𝑓]𝜒) |
| 6 | 1, 3, 4, 5 | bnj581 34922 |
. . . . . . 7
⊢ (𝜒′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
| 7 | 6 | simp1bi 1146 |
. . . . . 6
⊢ (𝜒′ → 𝑔 Fn 𝑛) |
| 8 | 2, 7 | bnj240 34713 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛)) |
| 9 | | bnj580.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 10 | | bnj580.2 |
. . . . . . . . . . . . 13
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 11 | | bnj580.7 |
. . . . . . . . . . . . 13
⊢ 𝐷 = (ω ∖
{∅}) |
| 12 | 3, 9 | bnj154 34892 |
. . . . . . . . . . . . 13
⊢ (𝜑′ ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 13 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
| 14 | 10, 4, 13 | bnj540 34906 |
. . . . . . . . . . . . 13
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 15 | | bnj580.8 |
. . . . . . . . . . . . 13
⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 16 | 15 | bnj591 34925 |
. . . . . . . . . . . . 13
⊢
([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
| 17 | | bnj580.9 |
. . . . . . . . . . . . 13
⊢ (𝜏 ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]𝜃)) |
| 18 | 9, 10, 1, 11, 12, 14, 6, 15, 16, 17 | bnj594 34926 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
| 19 | 18 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑛 → (𝜏 → 𝜃)) |
| 20 | 19 | rgen 3063 |
. . . . . . . . . 10
⊢
∀𝑗 ∈
𝑛 (𝜏 → 𝜃) |
| 21 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑛 ∈ V |
| 22 | 21, 17 | bnj110 34872 |
. . . . . . . . . 10
⊢ (( E Fr
𝑛 ∧ ∀𝑗 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑗 ∈ 𝑛 𝜃) |
| 23 | 20, 22 | mpan2 691 |
. . . . . . . . 9
⊢ ( E Fr
𝑛 → ∀𝑗 ∈ 𝑛 𝜃) |
| 24 | 15 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝑛 𝜃 ↔ ∀𝑗 ∈ 𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 25 | 23, 24 | sylib 218 |
. . . . . . . 8
⊢ ( E Fr
𝑛 → ∀𝑗 ∈ 𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 26 | 25 | r19.21be 3252 |
. . . . . . 7
⊢
∀𝑗 ∈
𝑛 ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 27 | 11 | bnj923 34782 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 28 | | nnord 7895 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → Ord 𝑛) |
| 29 | | ordfr 6399 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑛 → E Fr 𝑛) |
| 30 | 27, 28, 29 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
| 31 | 30 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → E Fr 𝑛) |
| 32 | 31 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) ↔ ( E Fr 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′))) |
| 33 | 32 | imbi1i 349 |
. . . . . . . . 9
⊢ (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ (( E Fr 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′)) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 34 | | impexp 450 |
. . . . . . . . 9
⊢ ((( E Fr
𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
| 35 | 33, 34 | bitri 275 |
. . . . . . . 8
⊢ (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
| 36 | 35 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 ( E Fr 𝑛 → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)))) |
| 37 | 26, 36 | mpbir 231 |
. . . . . 6
⊢
∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) |
| 38 | | r19.21v 3180 |
. . . . . 6
⊢
(∀𝑗 ∈
𝑛 ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 39 | 37, 38 | mpbi 230 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗)) |
| 40 | | eqfnfv 7051 |
. . . . . 6
⊢ ((𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛) → (𝑓 = 𝑔 ↔ ∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 41 | 40 | biimprd 248 |
. . . . 5
⊢ ((𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛) → (∀𝑗 ∈ 𝑛 (𝑓‘𝑗) = (𝑔‘𝑗) → 𝑓 = 𝑔)) |
| 42 | 8, 39, 41 | sylc 65 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) |
| 43 | 42 | 3expib 1123 |
. . 3
⊢ (𝑛 ∈ 𝐷 → ((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
| 44 | 43 | alrimivv 1928 |
. 2
⊢ (𝑛 ∈ 𝐷 → ∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
| 45 | | sbsbc 3792 |
. . . . . 6
⊢ ([𝑔 / 𝑓]𝜒 ↔ [𝑔 / 𝑓]𝜒) |
| 46 | 45 | anbi2i 623 |
. . . . 5
⊢ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) ↔ (𝜒 ∧ [𝑔 / 𝑓]𝜒)) |
| 47 | 46 | imbi1i 349 |
. . . 4
⊢ (((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔) ↔ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
| 48 | 47 | 2albii 1820 |
. . 3
⊢
(∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔) ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
| 49 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑔𝜒 |
| 50 | 49 | mo3 2564 |
. . 3
⊢
(∃*𝑓𝜒 ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
| 51 | 5 | anbi2i 623 |
. . . . 5
⊢ ((𝜒 ∧ 𝜒′) ↔ (𝜒 ∧ [𝑔 / 𝑓]𝜒)) |
| 52 | 51 | imbi1i 349 |
. . . 4
⊢ (((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) ↔ ((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
| 53 | 52 | 2albii 1820 |
. . 3
⊢
(∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔) ↔ ∀𝑓∀𝑔((𝜒 ∧ [𝑔 / 𝑓]𝜒) → 𝑓 = 𝑔)) |
| 54 | 48, 50, 53 | 3bitr4i 303 |
. 2
⊢
(∃*𝑓𝜒 ↔ ∀𝑓∀𝑔((𝜒 ∧ 𝜒′) → 𝑓 = 𝑔)) |
| 55 | 44, 54 | sylibr 234 |
1
⊢ (𝑛 ∈ 𝐷 → ∃*𝑓𝜒) |