Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2ant2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
3ad2ant.1 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
3ad2ant2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
3 | 2 | 3adant1 1129 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜒) |
Copyright terms: Public domain | W3C validator |