Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj255 Structured version   Visualization version   GIF version

Theorem bnj255 32207
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj255 ((𝜑𝜓𝜒𝜃) ↔ (𝜑𝜓 ∧ (𝜒𝜃)))

Proof of Theorem bnj255
StepHypRef Expression
1 bnj251 32204 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
2 3anass 1092 . 2 ((𝜑𝜓 ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
31, 2bitr4i 281 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜑𝜓 ∧ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084  w-bnj17 32188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-bnj17 32189
This theorem is referenced by:  bnj964  32447  bnj998  32461  bnj1033  32473  bnj1175  32508
  Copyright terms: Public domain W3C validator