Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1175 Structured version   Visualization version   GIF version

Theorem bnj1175 34987
Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1175.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1175.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
bnj1175.5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
Assertion
Ref Expression
bnj1175 (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))

Proof of Theorem bnj1175
StepHypRef Expression
1 bnj1175.4 . . . . 5 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
2 bnj255 34688 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴𝑤𝑅𝑧) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
3 df-bnj17 34670 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
41, 2, 33bitr2i 299 . . . 4 (𝜒 ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
5 bnj1175.5 . . . . 5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
65anbi1i 624 . . . 4 ((𝜃𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
74, 6bitr4i 278 . . 3 (𝜒 ↔ (𝜃𝑤𝑅𝑧))
8 bnj1125 34975 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
91, 8bnj835 34742 . . . 4 (𝜒 → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
10 bnj906 34913 . . . . . 6 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
111, 10bnj836 34743 . . . . 5 (𝜒 → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
12 bnj1152 34981 . . . . . . 7 (𝑤 ∈ pred(𝑧, 𝐴, 𝑅) ↔ (𝑤𝐴𝑤𝑅𝑧))
1312biimpri 228 . . . . . 6 ((𝑤𝐴𝑤𝑅𝑧) → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅))
141, 13bnj837 34744 . . . . 5 (𝜒𝑤 ∈ pred(𝑧, 𝐴, 𝑅))
1511, 14sseldd 3944 . . . 4 (𝜒𝑤 ∈ trCl(𝑧, 𝐴, 𝑅))
169, 15sseldd 3944 . . 3 (𝜒𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))
177, 16sylbir 235 . 2 ((𝜃𝑤𝑅𝑧) → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))
1817ex 412 1 (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  w-bnj17 34669   predc-bnj14 34671   FrSe w-bnj15 34675   trClc-bnj18 34677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-bnj17 34670  df-bnj14 34672  df-bnj13 34674  df-bnj15 34676  df-bnj18 34678  df-bnj19 34680
This theorem is referenced by:  bnj1190  34991
  Copyright terms: Public domain W3C validator