| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1175 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35000. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1175.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
| bnj1175.4 | ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) |
| bnj1175.5 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| bnj1175 | ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1175.4 | . . . . 5 ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
| 2 | bnj255 34695 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
| 3 | df-bnj17 34677 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) | |
| 4 | 1, 2, 3 | 3bitr2i 299 | . . . 4 ⊢ (𝜒 ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
| 5 | bnj1175.5 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) | |
| 6 | 5 | anbi1i 624 | . . . 4 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
| 7 | 4, 6 | bitr4i 278 | . . 3 ⊢ (𝜒 ↔ (𝜃 ∧ 𝑤𝑅𝑧)) |
| 8 | bnj1125 34982 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
| 9 | 1, 8 | bnj835 34749 | . . . 4 ⊢ (𝜒 → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 10 | bnj906 34920 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) | |
| 11 | 1, 10 | bnj836 34750 | . . . . 5 ⊢ (𝜒 → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) |
| 12 | bnj1152 34988 | . . . . . . 7 ⊢ (𝑤 ∈ pred(𝑧, 𝐴, 𝑅) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧)) | |
| 13 | 12 | biimpri 228 | . . . . . 6 ⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
| 14 | 1, 13 | bnj837 34751 | . . . . 5 ⊢ (𝜒 → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
| 15 | 11, 14 | sseldd 3947 | . . . 4 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑧, 𝐴, 𝑅)) |
| 16 | 9, 15 | sseldd 3947 | . . 3 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
| 17 | 7, 16 | sylbir 235 | . 2 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
| 18 | 17 | ex 412 | 1 ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 ∧ w-bnj17 34676 predc-bnj14 34678 FrSe w-bnj15 34682 trClc-bnj18 34684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-bnj17 34677 df-bnj14 34679 df-bnj13 34681 df-bnj15 34683 df-bnj18 34685 df-bnj19 34687 |
| This theorem is referenced by: bnj1190 34998 |
| Copyright terms: Public domain | W3C validator |