Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1175 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1175.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
bnj1175.4 | ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) |
bnj1175.5 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) |
Ref | Expression |
---|---|
bnj1175 | ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1175.4 | . . . . 5 ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
2 | bnj255 32684 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
3 | df-bnj17 32666 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) | |
4 | 1, 2, 3 | 3bitr2i 299 | . . . 4 ⊢ (𝜒 ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
5 | bnj1175.5 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) | |
6 | 5 | anbi1i 624 | . . . 4 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
7 | 4, 6 | bitr4i 277 | . . 3 ⊢ (𝜒 ↔ (𝜃 ∧ 𝑤𝑅𝑧)) |
8 | bnj1125 32972 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
9 | 1, 8 | bnj835 32739 | . . . 4 ⊢ (𝜒 → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
10 | bnj906 32910 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) | |
11 | 1, 10 | bnj836 32740 | . . . . 5 ⊢ (𝜒 → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) |
12 | bnj1152 32978 | . . . . . . 7 ⊢ (𝑤 ∈ pred(𝑧, 𝐴, 𝑅) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧)) | |
13 | 12 | biimpri 227 | . . . . . 6 ⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
14 | 1, 13 | bnj837 32741 | . . . . 5 ⊢ (𝜒 → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
15 | 11, 14 | sseldd 3922 | . . . 4 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑧, 𝐴, 𝑅)) |
16 | 9, 15 | sseldd 3922 | . . 3 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
17 | 7, 16 | sylbir 234 | . 2 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
18 | 17 | ex 413 | 1 ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 ∧ w-bnj17 32665 predc-bnj14 32667 FrSe w-bnj15 32671 trClc-bnj18 32673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-bnj17 32666 df-bnj14 32668 df-bnj13 32670 df-bnj15 32672 df-bnj18 32674 df-bnj19 32676 |
This theorem is referenced by: bnj1190 32988 |
Copyright terms: Public domain | W3C validator |