Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1175 Structured version   Visualization version   GIF version

Theorem bnj1175 34543
Description: Technical lemma for bnj69 34549. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1175.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1175.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
bnj1175.5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
Assertion
Ref Expression
bnj1175 (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))

Proof of Theorem bnj1175
StepHypRef Expression
1 bnj1175.4 . . . . 5 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
2 bnj255 34244 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴𝑤𝑅𝑧) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))
3 df-bnj17 34226 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
41, 2, 33bitr2i 299 . . . 4 (𝜒 ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
5 bnj1175.5 . . . . 5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
65anbi1i 623 . . . 4 ((𝜃𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ 𝑤𝑅𝑧))
74, 6bitr4i 278 . . 3 (𝜒 ↔ (𝜃𝑤𝑅𝑧))
8 bnj1125 34531 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
91, 8bnj835 34298 . . . 4 (𝜒 → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
10 bnj906 34469 . . . . . 6 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
111, 10bnj836 34299 . . . . 5 (𝜒 → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
12 bnj1152 34537 . . . . . . 7 (𝑤 ∈ pred(𝑧, 𝐴, 𝑅) ↔ (𝑤𝐴𝑤𝑅𝑧))
1312biimpri 227 . . . . . 6 ((𝑤𝐴𝑤𝑅𝑧) → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅))
141, 13bnj837 34300 . . . . 5 (𝜒𝑤 ∈ pred(𝑧, 𝐴, 𝑅))
1511, 14sseldd 3978 . . . 4 (𝜒𝑤 ∈ trCl(𝑧, 𝐴, 𝑅))
169, 15sseldd 3978 . . 3 (𝜒𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))
177, 16sylbir 234 . 2 ((𝜃𝑤𝑅𝑧) → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))
1817ex 412 1 (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cin 3942  wss 3943   class class class wbr 5141  w-bnj17 34225   predc-bnj14 34227   FrSe w-bnj15 34231   trClc-bnj18 34233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-reg 9586  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-1o 8464  df-bnj17 34226  df-bnj14 34228  df-bnj13 34230  df-bnj15 34232  df-bnj18 34234  df-bnj19 34236
This theorem is referenced by:  bnj1190  34547
  Copyright terms: Public domain W3C validator