| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1175 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35041. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1175.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
| bnj1175.4 | ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) |
| bnj1175.5 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| bnj1175 | ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1175.4 | . . . . 5 ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
| 2 | bnj255 34736 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) | |
| 3 | df-bnj17 34718 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) | |
| 4 | 1, 2, 3 | 3bitr2i 299 | . . . 4 ⊢ (𝜒 ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
| 5 | bnj1175.5 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) | |
| 6 | 5 | anbi1i 624 | . . . 4 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤𝑅𝑧)) |
| 7 | 4, 6 | bitr4i 278 | . . 3 ⊢ (𝜒 ↔ (𝜃 ∧ 𝑤𝑅𝑧)) |
| 8 | bnj1125 35023 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
| 9 | 1, 8 | bnj835 34790 | . . . 4 ⊢ (𝜒 → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 10 | bnj906 34961 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) | |
| 11 | 1, 10 | bnj836 34791 | . . . . 5 ⊢ (𝜒 → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) |
| 12 | bnj1152 35029 | . . . . . . 7 ⊢ (𝑤 ∈ pred(𝑧, 𝐴, 𝑅) ↔ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧)) | |
| 13 | 12 | biimpri 228 | . . . . . 6 ⊢ ((𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
| 14 | 1, 13 | bnj837 34792 | . . . . 5 ⊢ (𝜒 → 𝑤 ∈ pred(𝑧, 𝐴, 𝑅)) |
| 15 | 11, 14 | sseldd 3959 | . . . 4 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑧, 𝐴, 𝑅)) |
| 16 | 9, 15 | sseldd 3959 | . . 3 ⊢ (𝜒 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
| 17 | 7, 16 | sylbir 235 | . 2 ⊢ ((𝜃 ∧ 𝑤𝑅𝑧) → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)) |
| 18 | 17 | ex 412 | 1 ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 ∧ w-bnj17 34717 predc-bnj14 34719 FrSe w-bnj15 34723 trClc-bnj18 34725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-bnj17 34718 df-bnj14 34720 df-bnj13 34722 df-bnj15 34724 df-bnj18 34726 df-bnj19 34728 |
| This theorem is referenced by: bnj1190 35039 |
| Copyright terms: Public domain | W3C validator |