Proof of Theorem bnj964
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑖(𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) |
| 2 | | bnj964.2 |
. . . . . . . 8
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 3 | 2 | bnj1095 34795 |
. . . . . . 7
⊢ (𝜓 → ∀𝑖𝜓) |
| 4 | | bnj964.3 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 5 | 3, 4 | bnj1096 34796 |
. . . . . 6
⊢ (𝜒 → ∀𝑖𝜒) |
| 6 | 5 | nf5i 2146 |
. . . . 5
⊢
Ⅎ𝑖𝜒 |
| 7 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑖 𝑛 = suc 𝑚 |
| 8 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑖 𝑝 = suc 𝑛 |
| 9 | 6, 7, 8 | nf3an 1901 |
. . . 4
⊢
Ⅎ𝑖(𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) |
| 10 | 1, 9 | nfan 1899 |
. . 3
⊢
Ⅎ𝑖((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
| 11 | | bnj255 34719 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
| 12 | | bnj645 34764 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → suc 𝑖 ∈ 𝑝) |
| 13 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑝 = suc 𝑛) |
| 14 | 13 | bnj706 34768 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → 𝑝 = suc 𝑛) |
| 15 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) |
| 16 | 15 | biimpac 478 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑝 ∧ 𝑝 = suc 𝑛) → suc 𝑖 ∈ suc 𝑛) |
| 17 | | elsuci 6451 |
. . . . . . . . 9
⊢ (suc
𝑖 ∈ suc 𝑛 → (suc 𝑖 ∈ 𝑛 ∨ suc 𝑖 = 𝑛)) |
| 18 | | eqcom 2744 |
. . . . . . . . . 10
⊢ (suc
𝑖 = 𝑛 ↔ 𝑛 = suc 𝑖) |
| 19 | 18 | orbi2i 913 |
. . . . . . . . 9
⊢ ((suc
𝑖 ∈ 𝑛 ∨ suc 𝑖 = 𝑛) ↔ (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
| 20 | 17, 19 | sylib 218 |
. . . . . . . 8
⊢ (suc
𝑖 ∈ suc 𝑛 → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
| 21 | 16, 20 | syl 17 |
. . . . . . 7
⊢ ((suc
𝑖 ∈ 𝑝 ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
| 22 | 12, 14, 21 | syl2anc 584 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
| 23 | | df-3an 1089 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛)) |
| 24 | 23 | 3anbi3i 1160 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛))) |
| 25 | | bnj255 34719 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛))) |
| 26 | 24, 25 | bitr4i 278 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛)) |
| 27 | | bnj345 34728 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛) ↔ (suc 𝑖 ∈ 𝑛 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
| 28 | | bnj252 34717 |
. . . . . . . . . . 11
⊢ ((suc
𝑖 ∈ 𝑛 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 29 | 26, 27, 28 | 3bitri 297 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 30 | 11 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((suc
𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 31 | 29, 30 | bitr4i 278 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
| 32 | | bnj964.96 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 33 | 31, 32 | sylbir 235 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 34 | 33 | ex 412 |
. . . . . . 7
⊢ (suc
𝑖 ∈ 𝑛 → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 35 | | df-3an 1089 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖)) |
| 36 | 35 | 3anbi3i 1160 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖))) |
| 37 | | bnj255 34719 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖))) |
| 38 | 36, 37 | bitr4i 278 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖)) |
| 39 | | bnj345 34728 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖) ↔ (𝑛 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
| 40 | | bnj252 34717 |
. . . . . . . . . . 11
⊢ ((𝑛 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 41 | 38, 39, 40 | 3bitri 297 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 42 | 11 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
| 43 | 41, 42 | bitr4i 278 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
| 44 | | bnj964.165 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 45 | 43, 44 | sylbir 235 |
. . . . . . . 8
⊢ ((𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 46 | 45 | ex 412 |
. . . . . . 7
⊢ (𝑛 = suc 𝑖 → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 47 | 34, 46 | jaoi 858 |
. . . . . 6
⊢ ((suc
𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖) → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 48 | 22, 47 | mpcom 38 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 49 | 11, 48 | sylbir 235 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 50 | 49 | 3expia 1122 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 51 | 10, 50 | alrimi 2213 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 52 | | bnj964.5 |
. . . . 5
⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
| 53 | | vex 3484 |
. . . . 5
⊢ 𝑝 ∈ V |
| 54 | 2, 52, 53 | bnj539 34905 |
. . . 4
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑝 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 55 | | bnj964.8 |
. . . 4
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
| 56 | | bnj964.12 |
. . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
| 57 | | bnj964.13 |
. . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| 58 | 54, 55, 56, 57 | bnj965 34956 |
. . 3
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑝 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 59 | 58 | bnj115 34739 |
. 2
⊢ (𝜓″ ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 60 | 51, 59 | sylibr 234 |
1
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜓″) |