Proof of Theorem bnj964
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑖(𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) |
2 | | bnj964.2 |
. . . . . . . 8
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | 2 | bnj1095 32661 |
. . . . . . 7
⊢ (𝜓 → ∀𝑖𝜓) |
4 | | bnj964.3 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
5 | 3, 4 | bnj1096 32662 |
. . . . . 6
⊢ (𝜒 → ∀𝑖𝜒) |
6 | 5 | nf5i 2144 |
. . . . 5
⊢
Ⅎ𝑖𝜒 |
7 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑖 𝑛 = suc 𝑚 |
8 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑖 𝑝 = suc 𝑛 |
9 | 6, 7, 8 | nf3an 1905 |
. . . 4
⊢
Ⅎ𝑖(𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) |
10 | 1, 9 | nfan 1903 |
. . 3
⊢
Ⅎ𝑖((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
11 | | bnj255 32584 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
12 | | bnj645 32630 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → suc 𝑖 ∈ 𝑝) |
13 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑝 = suc 𝑛) |
14 | 13 | bnj706 32634 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → 𝑝 = suc 𝑛) |
15 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) |
16 | 15 | biimpac 478 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑝 ∧ 𝑝 = suc 𝑛) → suc 𝑖 ∈ suc 𝑛) |
17 | | elsuci 6317 |
. . . . . . . . 9
⊢ (suc
𝑖 ∈ suc 𝑛 → (suc 𝑖 ∈ 𝑛 ∨ suc 𝑖 = 𝑛)) |
18 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (suc
𝑖 = 𝑛 ↔ 𝑛 = suc 𝑖) |
19 | 18 | orbi2i 909 |
. . . . . . . . 9
⊢ ((suc
𝑖 ∈ 𝑛 ∨ suc 𝑖 = 𝑛) ↔ (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
20 | 17, 19 | sylib 217 |
. . . . . . . 8
⊢ (suc
𝑖 ∈ suc 𝑛 → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
21 | 16, 20 | syl 17 |
. . . . . . 7
⊢ ((suc
𝑖 ∈ 𝑝 ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
22 | 12, 14, 21 | syl2anc 583 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (suc 𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖)) |
23 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛)) |
24 | 23 | 3anbi3i 1157 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛))) |
25 | | bnj255 32584 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛))) |
26 | 24, 25 | bitr4i 277 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛)) |
27 | | bnj345 32593 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ suc 𝑖 ∈ 𝑛) ↔ (suc 𝑖 ∈ 𝑛 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
28 | | bnj252 32582 |
. . . . . . . . . . 11
⊢ ((suc
𝑖 ∈ 𝑛 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
29 | 26, 27, 28 | 3bitri 296 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
30 | 11 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((suc
𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
31 | 29, 30 | bitr4i 277 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) ↔ (suc 𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
32 | | bnj964.96 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
33 | 31, 32 | sylbir 234 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑛 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
34 | 33 | ex 412 |
. . . . . . 7
⊢ (suc
𝑖 ∈ 𝑛 → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
35 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖)) |
36 | 35 | 3anbi3i 1157 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖))) |
37 | | bnj255 32584 |
. . . . . . . . . . . 12
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖))) |
38 | 36, 37 | bitr4i 277 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖)) |
39 | | bnj345 32593 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑛 = suc 𝑖) ↔ (𝑛 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
40 | | bnj252 32582 |
. . . . . . . . . . 11
⊢ ((𝑛 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
41 | 38, 39, 40 | 3bitri 296 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
42 | 11 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)))) |
43 | 41, 42 | bitr4i 277 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) ↔ (𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝))) |
44 | | bnj964.165 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
45 | 43, 44 | sylbir 234 |
. . . . . . . 8
⊢ ((𝑛 = suc 𝑖 ∧ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
46 | 45 | ex 412 |
. . . . . . 7
⊢ (𝑛 = suc 𝑖 → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
47 | 34, 46 | jaoi 853 |
. . . . . 6
⊢ ((suc
𝑖 ∈ 𝑛 ∨ 𝑛 = suc 𝑖) → (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
48 | 22, 47 | mpcom 38 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
49 | 11, 48 | sylbir 234 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
50 | 49 | 3expia 1119 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
51 | 10, 50 | alrimi 2209 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
52 | | bnj964.5 |
. . . . 5
⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
53 | | vex 3426 |
. . . . 5
⊢ 𝑝 ∈ V |
54 | 2, 52, 53 | bnj539 32771 |
. . . 4
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑝 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
55 | | bnj964.8 |
. . . 4
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
56 | | bnj964.12 |
. . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
57 | | bnj964.13 |
. . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
58 | 54, 55, 56, 57 | bnj965 32822 |
. . 3
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑝 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
59 | 58 | bnj115 32604 |
. 2
⊢ (𝜓″ ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
60 | 51, 59 | sylibr 233 |
1
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜓″) |