![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj556 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj556.18 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj556.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
Ref | Expression |
---|---|
bnj556 | ⊢ (𝜂 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . . . 5 ⊢ 𝑝 ∈ V | |
2 | 1 | bnj216 34056 | . . . 4 ⊢ (𝑚 = suc 𝑝 → 𝑝 ∈ 𝑚) |
3 | 2 | 3anim3i 1153 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) → (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
4 | 3 | adantr 480 | . 2 ⊢ (((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω) → (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
5 | bnj556.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
6 | bnj258 34032 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ (𝜂 ↔ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω)) |
8 | bnj556.18 | . 2 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
9 | 4, 7, 8 | 3imtr4i 292 | 1 ⊢ (𝜂 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 suc csuc 6366 ωcom 7859 ∧ w-bnj17 34010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 df-suc 6370 df-bnj17 34011 |
This theorem is referenced by: bnj557 34225 bnj561 34227 bnj562 34228 |
Copyright terms: Public domain | W3C validator |