Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj556 Structured version   Visualization version   GIF version

Theorem bnj556 34915
Description: Technical lemma for bnj852 34936. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj556.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj556.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
Assertion
Ref Expression
bnj556 (𝜂𝜎)

Proof of Theorem bnj556
StepHypRef Expression
1 vex 3483 . . . . 5 𝑝 ∈ V
21bnj216 34747 . . . 4 (𝑚 = suc 𝑝𝑝𝑚)
323anim3i 1154 . . 3 ((𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝) → (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
43adantr 480 . 2 (((𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω) → (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj556.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
6 bnj258 34723 . . 3 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ((𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω))
75, 6bitri 275 . 2 (𝜂 ↔ ((𝑚𝐷𝑛 = suc 𝑚𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω))
8 bnj556.18 . 2 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
94, 7, 83imtr4i 292 1 (𝜂𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  suc csuc 6385  ωcom 7888  w-bnj17 34701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-sn 4626  df-suc 6389  df-bnj17 34702
This theorem is referenced by:  bnj557  34916  bnj561  34918  bnj562  34919
  Copyright terms: Public domain W3C validator