| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj556 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34936. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj556.18 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| bnj556.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| Ref | Expression |
|---|---|
| bnj556 | ⊢ (𝜂 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3483 | . . . . 5 ⊢ 𝑝 ∈ V | |
| 2 | 1 | bnj216 34747 | . . . 4 ⊢ (𝑚 = suc 𝑝 → 𝑝 ∈ 𝑚) |
| 3 | 2 | 3anim3i 1154 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) → (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω) → (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| 5 | bnj556.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
| 6 | bnj258 34723 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (𝜂 ↔ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝) ∧ 𝑝 ∈ ω)) |
| 8 | bnj556.18 | . 2 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
| 9 | 4, 7, 8 | 3imtr4i 292 | 1 ⊢ (𝜂 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 suc csuc 6385 ωcom 7888 ∧ w-bnj17 34701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-sn 4626 df-suc 6389 df-bnj17 34702 |
| This theorem is referenced by: bnj557 34916 bnj561 34918 bnj562 34919 |
| Copyright terms: Public domain | W3C validator |