| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1018g | Structured version Visualization version GIF version | ||
| Description: Version of bnj1018 34941 with less disjoint variable conditions, but requiring ax-13 2376. (Contributed by GG, 27-Mar-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1018.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj1018.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj1018.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj1018.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
| bnj1018.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
| bnj1018.7 | ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
| bnj1018.8 | ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
| bnj1018.9 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
| bnj1018.10 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
| bnj1018.11 | ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
| bnj1018.12 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
| bnj1018.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj1018.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj1018.15 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
| bnj1018.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| bnj1018.26 | ⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) |
| bnj1018.29 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
| bnj1018.30 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
| Ref | Expression |
|---|---|
| bnj1018g | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bnj17 34664 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏)) | |
| 2 | bnj258 34685 | . . . . . . . 8 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏)) | |
| 3 | bnj1018.29 | . . . . . . . 8 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) | |
| 4 | 2, 3 | sylbir 235 | . . . . . . 7 ⊢ (((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏) → 𝜒″) |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂) → (𝜏 → 𝜒″)) |
| 6 | 5 | eximdv 1917 | . . . . 5 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂) → (∃𝑝𝜏 → ∃𝑝𝜒″)) |
| 7 | bnj1018.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 8 | bnj1018.9 | . . . . . 6 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
| 9 | bnj1018.12 | . . . . . 6 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
| 10 | bnj1018.14 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 11 | bnj1018.16 | . . . . . 6 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 12 | 7, 8, 9, 10, 11 | bnj985 34931 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑝𝜒″) |
| 13 | 6, 12 | imbitrrdi 252 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂) → (∃𝑝𝜏 → 𝐺 ∈ 𝐵)) |
| 14 | 13 | imp 406 | . . 3 ⊢ (((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏) → 𝐺 ∈ 𝐵) |
| 15 | 1, 14 | sylbi 217 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → 𝐺 ∈ 𝐵) |
| 16 | bnj1019 34756 | . . 3 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
| 17 | bnj1018.30 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) | |
| 18 | 17 | simp3d 1144 | . . . . 5 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ 𝑝) |
| 19 | bnj1018.26 | . . . . . . 7 ⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) | |
| 20 | 19 | bnj1235 34781 | . . . . . 6 ⊢ (𝜒″ → 𝐺 Fn 𝑝) |
| 21 | fndm 6640 | . . . . . 6 ⊢ (𝐺 Fn 𝑝 → dom 𝐺 = 𝑝) | |
| 22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → dom 𝐺 = 𝑝) |
| 23 | 18, 22 | eleqtrrd 2837 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ dom 𝐺) |
| 24 | 23 | exlimiv 1930 | . . 3 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ dom 𝐺) |
| 25 | 16, 24 | sylbir 235 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → suc 𝑖 ∈ dom 𝐺) |
| 26 | bnj1018.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 27 | bnj1018.2 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 28 | bnj1018.13 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 29 | 11 | bnj918 34743 | . . 3 ⊢ 𝐺 ∈ V |
| 30 | vex 3463 | . . . 4 ⊢ 𝑖 ∈ V | |
| 31 | 30 | sucex 7798 | . . 3 ⊢ suc 𝑖 ∈ V |
| 32 | 26, 27, 28, 10, 29, 31 | bnj1015 34939 | . 2 ⊢ ((𝐺 ∈ 𝐵 ∧ suc 𝑖 ∈ dom 𝐺) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 33 | 15, 25, 32 | syl2anc 584 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 Vcvv 3459 [wsbc 3765 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 {csn 4601 〈cop 4607 ∪ ciun 4967 dom cdm 5654 suc csuc 6354 Fn wfn 6525 ‘cfv 6530 ωcom 7859 ∧ w-bnj17 34663 predc-bnj14 34665 FrSe w-bnj15 34669 trClc-bnj18 34671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-dm 5664 df-suc 6358 df-iota 6483 df-fn 6533 df-fv 6538 df-bnj17 34664 df-bnj18 34672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |