| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1019 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1019 | ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1953 | . 2 ⊢ (∃𝑝((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏)) | |
| 2 | bnj258 34700 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏)) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ ∃𝑝((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏)) |
| 4 | df-bnj17 34679 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1779 ∧ w-bnj17 34678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-bnj17 34679 |
| This theorem is referenced by: bnj1018g 34955 bnj1018 34956 bnj1020 34957 bnj1021 34958 |
| Copyright terms: Public domain | W3C validator |