![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1019 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1019 | ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1949 | . 2 ⊢ (∃𝑝((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏)) | |
2 | bnj258 34662 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏)) | |
3 | 2 | exbii 1843 | . 2 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ ∃𝑝((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ 𝜏)) |
4 | df-bnj17 34641 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) ↔ ((𝜃 ∧ 𝜒 ∧ 𝜂) ∧ ∃𝑝𝜏)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1085 ∃wex 1774 ∧ w-bnj17 34640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1087 df-ex 1775 df-bnj17 34641 |
This theorem is referenced by: bnj1018g 34917 bnj1018 34918 bnj1020 34919 bnj1021 34920 |
Copyright terms: Public domain | W3C validator |