Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Structured version   Visualization version   GIF version

Theorem bnj518 34841
Description: Technical lemma for bnj852 34876. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj518.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj518.3 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
Assertion
Ref Expression
bnj518 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝑓,𝑖,𝑝,𝑦   𝑖,𝑛,𝑝   𝐴,𝑖,𝑝,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑛)   𝑅(𝑥,𝑓,𝑖,𝑛,𝑝)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
2 bnj334 34668 . . . 4 ((𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
31, 2bitri 275 . . 3 (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
4 df-bnj17 34642 . . . 4 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛))
5 bnj518.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj518.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
75, 6bnj517 34840 . . . . 5 ((𝑛 ∈ ω ∧ 𝜑𝜓) → ∀𝑝𝑛 (𝑓𝑝) ⊆ 𝐴)
87r19.21bi 3238 . . . 4 (((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
94, 8sylbi 217 . . 3 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
103, 9sylbi 217 . 2 (𝜏 → (𝑓𝑝) ⊆ 𝐴)
11 ssel 3959 . . . 4 ((𝑓𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓𝑝) → 𝑦𝐴))
12 bnj93 34818 . . . . 5 ((𝑅 FrSe 𝐴𝑦𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V)
1312ex 412 . . . 4 (𝑅 FrSe 𝐴 → (𝑦𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V))
1411, 13sylan9r 508 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V))
1514ralrimiv 3132 . 2 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
1610, 15sylan2 593 1 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3464  wss 3933  c0 4315   ciun 4973  suc csuc 6367  cfv 6542  ωcom 7870  w-bnj17 34641   predc-bnj14 34643   FrSe w-bnj15 34647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fv 6550  df-om 7871  df-bnj17 34642  df-bnj14 34644  df-bnj13 34646  df-bnj15 34648
This theorem is referenced by:  bnj535  34845  bnj546  34851
  Copyright terms: Public domain W3C validator