Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj518 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj518.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj518.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj518.3 | ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj518 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj518.3 | . . . 4 ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) | |
2 | bnj334 32592 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) | |
3 | 1, 2 | bitri 274 | . . 3 ⊢ (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) |
4 | df-bnj17 32566 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛)) | |
5 | bnj518.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
6 | bnj518.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
7 | 5, 6 | bnj517 32765 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) → ∀𝑝 ∈ 𝑛 (𝑓‘𝑝) ⊆ 𝐴) |
8 | 7 | r19.21bi 3132 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
9 | 4, 8 | sylbi 216 | . . 3 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
10 | 3, 9 | sylbi 216 | . 2 ⊢ (𝜏 → (𝑓‘𝑝) ⊆ 𝐴) |
11 | ssel 3910 | . . . 4 ⊢ ((𝑓‘𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓‘𝑝) → 𝑦 ∈ 𝐴)) | |
12 | bnj93 32743 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V) | |
13 | 12 | ex 412 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → (𝑦 ∈ 𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
14 | 11, 13 | sylan9r 508 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓‘𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
15 | 14 | ralrimiv 3106 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
16 | 10, 15 | sylan2 592 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 suc csuc 6253 ‘cfv 6418 ωcom 7687 ∧ w-bnj17 32565 predc-bnj14 32567 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fv 6426 df-om 7688 df-bnj17 32566 df-bnj14 32568 df-bnj13 32570 df-bnj15 32572 |
This theorem is referenced by: bnj535 32770 bnj546 32776 |
Copyright terms: Public domain | W3C validator |