![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj518 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34897. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj518.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj518.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj518.3 | ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj518 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj518.3 | . . . 4 ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) | |
2 | bnj334 34689 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) | |
3 | 1, 2 | bitri 275 | . . 3 ⊢ (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) |
4 | df-bnj17 34663 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛)) | |
5 | bnj518.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
6 | bnj518.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
7 | 5, 6 | bnj517 34861 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) → ∀𝑝 ∈ 𝑛 (𝑓‘𝑝) ⊆ 𝐴) |
8 | 7 | r19.21bi 3257 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
9 | 4, 8 | sylbi 217 | . . 3 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
10 | 3, 9 | sylbi 217 | . 2 ⊢ (𝜏 → (𝑓‘𝑝) ⊆ 𝐴) |
11 | ssel 4002 | . . . 4 ⊢ ((𝑓‘𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓‘𝑝) → 𝑦 ∈ 𝐴)) | |
12 | bnj93 34839 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V) | |
13 | 12 | ex 412 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → (𝑦 ∈ 𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
14 | 11, 13 | sylan9r 508 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓‘𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
15 | 14 | ralrimiv 3151 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
16 | 10, 15 | sylan2 592 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ∪ ciun 5015 suc csuc 6397 ‘cfv 6573 ωcom 7903 ∧ w-bnj17 34662 predc-bnj14 34664 FrSe w-bnj15 34668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fv 6581 df-om 7904 df-bnj17 34663 df-bnj14 34665 df-bnj13 34667 df-bnj15 34669 |
This theorem is referenced by: bnj535 34866 bnj546 34872 |
Copyright terms: Public domain | W3C validator |