Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Structured version   Visualization version   GIF version

Theorem bnj518 34862
Description: Technical lemma for bnj852 34897. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj518.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj518.3 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
Assertion
Ref Expression
bnj518 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝑓,𝑖,𝑝,𝑦   𝑖,𝑛,𝑝   𝐴,𝑖,𝑝,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑛)   𝑅(𝑥,𝑓,𝑖,𝑛,𝑝)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
2 bnj334 34689 . . . 4 ((𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
31, 2bitri 275 . . 3 (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
4 df-bnj17 34663 . . . 4 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛))
5 bnj518.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj518.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
75, 6bnj517 34861 . . . . 5 ((𝑛 ∈ ω ∧ 𝜑𝜓) → ∀𝑝𝑛 (𝑓𝑝) ⊆ 𝐴)
87r19.21bi 3257 . . . 4 (((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
94, 8sylbi 217 . . 3 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
103, 9sylbi 217 . 2 (𝜏 → (𝑓𝑝) ⊆ 𝐴)
11 ssel 4002 . . . 4 ((𝑓𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓𝑝) → 𝑦𝐴))
12 bnj93 34839 . . . . 5 ((𝑅 FrSe 𝐴𝑦𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V)
1312ex 412 . . . 4 (𝑅 FrSe 𝐴 → (𝑦𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V))
1411, 13sylan9r 508 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V))
1514ralrimiv 3151 . 2 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
1610, 15sylan2 592 1 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  c0 4352   ciun 5015  suc csuc 6397  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fv 6581  df-om 7904  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by:  bnj535  34866  bnj546  34872
  Copyright terms: Public domain W3C validator