Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj518 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32614. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj518.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj518.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj518.3 | ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj518 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj518.3 | . . . 4 ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) | |
2 | bnj334 32404 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) | |
3 | 1, 2 | bitri 278 | . . 3 ⊢ (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) |
4 | df-bnj17 32378 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛)) | |
5 | bnj518.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
6 | bnj518.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
7 | 5, 6 | bnj517 32578 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) → ∀𝑝 ∈ 𝑛 (𝑓‘𝑝) ⊆ 𝐴) |
8 | 7 | r19.21bi 3130 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
9 | 4, 8 | sylbi 220 | . . 3 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
10 | 3, 9 | sylbi 220 | . 2 ⊢ (𝜏 → (𝑓‘𝑝) ⊆ 𝐴) |
11 | ssel 3893 | . . . 4 ⊢ ((𝑓‘𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓‘𝑝) → 𝑦 ∈ 𝐴)) | |
12 | bnj93 32556 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V) | |
13 | 12 | ex 416 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → (𝑦 ∈ 𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
14 | 11, 13 | sylan9r 512 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓‘𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
15 | 14 | ralrimiv 3104 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
16 | 10, 15 | sylan2 596 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 ∪ ciun 4904 suc csuc 6215 ‘cfv 6380 ωcom 7644 ∧ w-bnj17 32377 predc-bnj14 32379 FrSe w-bnj15 32383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fv 6388 df-om 7645 df-bnj17 32378 df-bnj14 32380 df-bnj13 32382 df-bnj15 32384 |
This theorem is referenced by: bnj535 32583 bnj546 32589 |
Copyright terms: Public domain | W3C validator |