Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Structured version   Visualization version   GIF version

Theorem bnj518 33897
Description: Technical lemma for bnj852 33932. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj518.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj518.3 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
Assertion
Ref Expression
bnj518 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝑓,𝑖,𝑝,𝑦   𝑖,𝑛,𝑝   𝐴,𝑖,𝑝,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑛)   𝑅(𝑥,𝑓,𝑖,𝑛,𝑝)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
2 bnj334 33724 . . . 4 ((𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
31, 2bitri 275 . . 3 (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
4 df-bnj17 33698 . . . 4 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛))
5 bnj518.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj518.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
75, 6bnj517 33896 . . . . 5 ((𝑛 ∈ ω ∧ 𝜑𝜓) → ∀𝑝𝑛 (𝑓𝑝) ⊆ 𝐴)
87r19.21bi 3249 . . . 4 (((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
94, 8sylbi 216 . . 3 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
103, 9sylbi 216 . 2 (𝜏 → (𝑓𝑝) ⊆ 𝐴)
11 ssel 3976 . . . 4 ((𝑓𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓𝑝) → 𝑦𝐴))
12 bnj93 33874 . . . . 5 ((𝑅 FrSe 𝐴𝑦𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V)
1312ex 414 . . . 4 (𝑅 FrSe 𝐴 → (𝑦𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V))
1411, 13sylan9r 510 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V))
1514ralrimiv 3146 . 2 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
1610, 15sylan2 594 1 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3949  c0 4323   ciun 4998  suc csuc 6367  cfv 6544  ωcom 7855  w-bnj17 33697   predc-bnj14 33699   FrSe w-bnj15 33703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fv 6552  df-om 7856  df-bnj17 33698  df-bnj14 33700  df-bnj13 33702  df-bnj15 33704
This theorem is referenced by:  bnj535  33901  bnj546  33907
  Copyright terms: Public domain W3C validator