| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj518 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34876. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj518.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj518.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj518.3 | ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) |
| Ref | Expression |
|---|---|
| bnj518 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj518.3 | . . . 4 ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) | |
| 2 | bnj334 34668 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) |
| 4 | df-bnj17 34642 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛)) | |
| 5 | bnj518.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 6 | bnj518.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 7 | 5, 6 | bnj517 34840 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) → ∀𝑝 ∈ 𝑛 (𝑓‘𝑝) ⊆ 𝐴) |
| 8 | 7 | r19.21bi 3238 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
| 9 | 4, 8 | sylbi 217 | . . 3 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
| 10 | 3, 9 | sylbi 217 | . 2 ⊢ (𝜏 → (𝑓‘𝑝) ⊆ 𝐴) |
| 11 | ssel 3959 | . . . 4 ⊢ ((𝑓‘𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓‘𝑝) → 𝑦 ∈ 𝐴)) | |
| 12 | bnj93 34818 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V) | |
| 13 | 12 | ex 412 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → (𝑦 ∈ 𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 14 | 11, 13 | sylan9r 508 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓‘𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 15 | 14 | ralrimiv 3132 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| 16 | 10, 15 | sylan2 593 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 ∪ ciun 4973 suc csuc 6367 ‘cfv 6542 ωcom 7870 ∧ w-bnj17 34641 predc-bnj14 34643 FrSe w-bnj15 34647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fv 6550 df-om 7871 df-bnj17 34642 df-bnj14 34644 df-bnj13 34646 df-bnj15 34648 |
| This theorem is referenced by: bnj535 34845 bnj546 34851 |
| Copyright terms: Public domain | W3C validator |