Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj534 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj534.1 | ⊢ (𝜒 → (∃𝑥𝜑 ∧ 𝜓)) |
Ref | Expression |
---|---|
bnj534 | ⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj534.1 | . 2 ⊢ (𝜒 → (∃𝑥𝜑 ∧ 𝜓)) | |
2 | 19.41v 1954 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: bnj600 32799 bnj852 32801 |
Copyright terms: Public domain | W3C validator |