Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj534 Structured version   Visualization version   GIF version

Theorem bnj534 32619
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj534.1 (𝜒 → (∃𝑥𝜑𝜓))
Assertion
Ref Expression
bnj534 (𝜒 → ∃𝑥(𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)

Proof of Theorem bnj534
StepHypRef Expression
1 bnj534.1 . 2 (𝜒 → (∃𝑥𝜑𝜓))
2 19.41v 1954 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
31, 2sylibr 233 1 (𝜒 → ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  bnj600  32799  bnj852  32801
  Copyright terms: Public domain W3C validator