Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj600 Structured version   Visualization version   GIF version

Theorem bnj600 31535
 Description: Technical lemma for bnj852 31537. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj600.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj600.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj600.3 𝐷 = (ω ∖ {∅})
bnj600.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj600.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
bnj600.10 (𝜑′[𝑚 / 𝑛]𝜑)
bnj600.11 (𝜓′[𝑚 / 𝑛]𝜓)
bnj600.12 (𝜒′[𝑚 / 𝑛]𝜒)
bnj600.13 (𝜑″[𝐺 / 𝑓]𝜑)
bnj600.14 (𝜓″[𝐺 / 𝑓]𝜓)
bnj600.15 (𝜒″[𝐺 / 𝑓]𝜒)
bnj600.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj600.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj600.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj600.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj600.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj600.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj600.22 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj600.23 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj600.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj600.25 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj600.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
Assertion
Ref Expression
bnj600 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝐴,𝑓,𝑖,𝑛,𝑝   𝐷,𝑓,𝑝   𝑖,𝐺,𝑦   𝑅,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝑅   𝜂,𝑓,𝑖   𝑥,𝑓,𝑚,𝑛,𝑝   𝑖,𝜑′,𝑝   𝜑,𝑚,𝑝   𝜓,𝑚,𝑝   𝜃,𝑝
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑖,𝑚,𝑛)   𝑅(𝑥)   𝐺(𝑥,𝑓,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj600
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj600.5 . . . . . 6 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
2 bnj600.13 . . . . . 6 (𝜑″[𝐺 / 𝑓]𝜑)
3 bnj600.14 . . . . . 6 (𝜓″[𝐺 / 𝑓]𝜓)
4 bnj600.17 . . . . . 6 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
5 bnj600.19 . . . . . 6 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
6 bnj600.16 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
76bnj528 31505 . . . . . 6 𝐺 ∈ V
8 bnj600.4 . . . . . . 7 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
9 bnj600.10 . . . . . . 7 (𝜑′[𝑚 / 𝑛]𝜑)
10 bnj600.11 . . . . . . 7 (𝜓′[𝑚 / 𝑛]𝜓)
11 bnj600.12 . . . . . . 7 (𝜒′[𝑚 / 𝑛]𝜒)
12 vex 3417 . . . . . . 7 𝑚 ∈ V
138, 9, 10, 11, 12bnj207 31497 . . . . . 6 (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))
14 bnj600.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
1514, 2, 7bnj609 31533 . . . . . 6 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
16 bnj600.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1716, 3, 7bnj611 31534 . . . . . 6 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
18 bnj600.3 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
1918bnj168 31345 . . . . . . . . 9 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
20 df-rex 3123 . . . . . . . . 9 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
2119, 20sylib 210 . . . . . . . 8 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
2218bnj158 31344 . . . . . . . . . . . . . 14 (𝑚𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
23 df-rex 3123 . . . . . . . . . . . . . 14 (∃𝑝 ∈ ω 𝑚 = suc 𝑝 ↔ ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2422, 23sylib 210 . . . . . . . . . . . . 13 (𝑚𝐷 → ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2524adantr 474 . . . . . . . . . . . 12 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2625ancri 547 . . . . . . . . . . 11 ((𝑚𝐷𝑛 = suc 𝑚) → (∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
2726bnj534 31355 . . . . . . . . . 10 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
28 bnj432 31331 . . . . . . . . . . 11 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
2928exbii 1949 . . . . . . . . . 10 (∃𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ∃𝑝((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
3027, 29sylibr 226 . . . . . . . . 9 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3130eximi 1935 . . . . . . . 8 (∃𝑚(𝑚𝐷𝑛 = suc 𝑚) → ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3221, 31syl 17 . . . . . . 7 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3352exbii 1950 . . . . . . 7 (∃𝑚𝑝𝜂 ↔ ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3432, 33sylibr 226 . . . . . 6 ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝑝𝜂)
35 rsp 3138 . . . . . . . . 9 (∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒) → (𝑚𝐷 → (𝑚 E 𝑛[𝑚 / 𝑛]𝜒)))
361, 35sylbi 209 . . . . . . . 8 (𝜃 → (𝑚𝐷 → (𝑚 E 𝑛[𝑚 / 𝑛]𝜒)))
37363imp 1143 . . . . . . 7 ((𝜃𝑚𝐷𝑚 E 𝑛) → [𝑚 / 𝑛]𝜒)
3837, 11sylibr 226 . . . . . 6 ((𝜃𝑚𝐷𝑚 E 𝑛) → 𝜒′)
39 bnj600.18 . . . . . . 7 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
4014, 9, 12bnj523 31503 . . . . . . . 8 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
4116, 10, 12bnj539 31507 . . . . . . . 8 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4240, 41, 18, 6, 4, 39bnj544 31510 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
4339, 5, 42bnj561 31519 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
4440, 18, 6, 4, 39, 42, 15bnj545 31511 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
4539, 5, 44bnj562 31520 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)
46 bnj600.20 . . . . . . 7 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
47 bnj600.22 . . . . . . 7 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
48 bnj600.23 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
49 bnj600.24 . . . . . . 7 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
50 bnj600.25 . . . . . . 7 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
51 bnj600.26 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
52 bnj600.21 . . . . . . 7 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
5318, 6, 4, 39, 5, 46, 47, 48, 49, 50, 51, 40, 41, 42, 52, 43, 17bnj571 31522 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)
54 biid 253 . . . . . 6 ([𝑧 / 𝑓]𝜑[𝑧 / 𝑓]𝜑)
55 biid 253 . . . . . 6 ([𝑧 / 𝑓]𝜓[𝑧 / 𝑓]𝜓)
56 biid 253 . . . . . 6 ([𝐺 / 𝑧][𝑧 / 𝑓]𝜑[𝐺 / 𝑧][𝑧 / 𝑓]𝜑)
57 biid 253 . . . . . 6 ([𝐺 / 𝑧][𝑧 / 𝑓]𝜓[𝐺 / 𝑧][𝑧 / 𝑓]𝜓)
581, 2, 3, 4, 5, 7, 13, 15, 17, 34, 38, 43, 45, 53, 14, 16, 54, 55, 56, 57bnj607 31532 . . . . 5 ((𝑛 ≠ 1o𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5914, 16, 18bnj579 31530 . . . . . . 7 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
6059a1d 25 . . . . . 6 (𝑛𝐷 → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
61603ad2ant2 1170 . . . . 5 ((𝑛 ≠ 1o𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6258, 61jcad 510 . . . 4 ((𝑛 ≠ 1o𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn 𝑛𝜑𝜓) ∧ ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))))
63 df-eu 2640 . . . 4 (∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ (∃𝑓(𝑓 Fn 𝑛𝜑𝜓) ∧ ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6462, 63syl6ibr 244 . . 3 ((𝑛 ≠ 1o𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6564, 8sylibr 226 . 2 ((𝑛 ≠ 1o𝑛𝐷𝜃) → 𝜒)
66653expib 1158 1 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658  ∃wex 1880   ∈ wcel 2166  ∃*wmo 2603  ∃!weu 2639   ≠ wne 2999  ∀wral 3117  ∃wrex 3118  [wsbc 3662   ∖ cdif 3795   ∪ cun 3796  ∅c0 4144  {csn 4397  ⟨cop 4403  ∪ ciun 4740   class class class wbr 4873   E cep 5254  suc csuc 5965   Fn wfn 6118  ‘cfv 6123  ωcom 7326  1oc1o 7819   ∧ w-bnj17 31301   predc-bnj14 31303   FrSe w-bnj15 31307 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-reg 8766 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-1o 7826  df-bnj17 31302  df-bnj14 31304  df-bnj13 31306  df-bnj15 31308 This theorem is referenced by:  bnj601  31536
 Copyright terms: Public domain W3C validator