Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Visualization version   GIF version

Theorem bnj852 34397
Description: Technical lemma for bnj69 34486. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj852.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj852.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj852 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj852
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2814 . . . . . 6 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 481 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
32ancri 549 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
43bnj534 34215 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
5 eleq1 2820 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
65anbi2d 628 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
76biimpar 477 . . . . 5 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (𝑅 FrSe 𝐴𝑥𝐴))
8 biid 261 . . . . . . . 8 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
9 bnj852.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
10 omex 9644 . . . . . . . . . 10 ω ∈ V
11 difexg 5327 . . . . . . . . . 10 (ω ∈ V → (ω ∖ {∅}) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 (ω ∖ {∅}) ∈ V
139, 12eqeltri 2828 . . . . . . . 8 𝐷 ∈ V
14 zfregfr 9606 . . . . . . . 8 E Fr 𝐷
158, 13, 14bnj157 34335 . . . . . . 7 (∀𝑛𝐷 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
16 biid 261 . . . . . . . . . 10 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj852.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 261 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
1916, 17, 9, 18, 8bnj153 34356 . . . . . . . . 9 (𝑛 = 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2016, 17, 9, 18, 8bnj601 34396 . . . . . . . . 9 (𝑛 ≠ 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2119, 20pm2.61ine 3024 . . . . . . . 8 ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2221ex 412 . . . . . . 7 (𝑛𝐷 → (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2315, 22mprg 3066 . . . . . 6 𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
24 r19.21v 3178 . . . . . 6 (∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2523, 24mpbi 229 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
267, 25syl 17 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
27 bnj602 34391 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
2827eqeq2d 2742 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
29 bnj852.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3028, 29bitr4di 289 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑))
31303anbi2d 1440 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓)))
3231eubidv 2579 . . . . . 6 (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3332ralbidv 3176 . . . . 5 (𝑥 = 𝑋 → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3433adantr 480 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3526, 34mpbid 231 . . 3 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
364, 35bnj593 34221 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
3736bnj937 34247 1 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  ∃!weu 2561  wral 3060  Vcvv 3473  [wsbc 3777  cdif 3945  c0 4322  {csn 4628   ciun 4997   class class class wbr 5148   E cep 5579  suc csuc 6366   Fn wfn 6538  cfv 6543  ωcom 7859  1oc1o 8465   predc-bnj14 34164   FrSe w-bnj15 34168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8472  df-bnj17 34163  df-bnj14 34165  df-bnj13 34167  df-bnj15 34169
This theorem is referenced by:  bnj864  34398  bnj865  34399  bnj906  34406
  Copyright terms: Public domain W3C validator