Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Visualization version   GIF version

Theorem bnj852 34914
Description: Technical lemma for bnj69 35003. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj852.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj852.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj852 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj852
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2821 . . . . . 6 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 481 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
32ancri 549 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
43bnj534 34732 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
5 eleq1 2827 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
65anbi2d 630 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
76biimpar 477 . . . . 5 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (𝑅 FrSe 𝐴𝑥𝐴))
8 biid 261 . . . . . . . 8 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
9 bnj852.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
10 omex 9681 . . . . . . . . . 10 ω ∈ V
11 difexg 5335 . . . . . . . . . 10 (ω ∈ V → (ω ∖ {∅}) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 (ω ∖ {∅}) ∈ V
139, 12eqeltri 2835 . . . . . . . 8 𝐷 ∈ V
14 zfregfr 9643 . . . . . . . 8 E Fr 𝐷
158, 13, 14bnj157 34852 . . . . . . 7 (∀𝑛𝐷 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
16 biid 261 . . . . . . . . . 10 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj852.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 261 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
1916, 17, 9, 18, 8bnj153 34873 . . . . . . . . 9 (𝑛 = 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2016, 17, 9, 18, 8bnj601 34913 . . . . . . . . 9 (𝑛 ≠ 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2119, 20pm2.61ine 3023 . . . . . . . 8 ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2221ex 412 . . . . . . 7 (𝑛𝐷 → (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2315, 22mprg 3065 . . . . . 6 𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
24 r19.21v 3178 . . . . . 6 (∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2523, 24mpbi 230 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
267, 25syl 17 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
27 bnj602 34908 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
2827eqeq2d 2746 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
29 bnj852.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3028, 29bitr4di 289 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑))
31303anbi2d 1440 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓)))
3231eubidv 2584 . . . . . 6 (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3332ralbidv 3176 . . . . 5 (𝑥 = 𝑋 → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3433adantr 480 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3526, 34mpbid 232 . . 3 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
364, 35bnj593 34738 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
3736bnj937 34764 1 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  ∃!weu 2566  wral 3059  Vcvv 3478  [wsbc 3791  cdif 3960  c0 4339  {csn 4631   ciun 4996   class class class wbr 5148   E cep 5588  suc csuc 6388   Fn wfn 6558  cfv 6563  ωcom 7887  1oc1o 8498   predc-bnj14 34681   FrSe w-bnj15 34685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-bnj17 34680  df-bnj14 34682  df-bnj13 34684  df-bnj15 34686
This theorem is referenced by:  bnj864  34915  bnj865  34916  bnj906  34923
  Copyright terms: Public domain W3C validator