| Step | Hyp | Ref
| Expression |
| 1 | | elisset 2817 |
. . . . . 6
⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 = 𝑋) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 𝑥 = 𝑋) |
| 3 | 2 | ancri 549 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴))) |
| 4 | 3 | bnj534 34775 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴))) |
| 5 | | eleq1 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 6 | 5 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴))) |
| 7 | 6 | biimpar 477 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) |
| 8 | | biid 261 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) |
| 9 | | bnj852.3 |
. . . . . . . . 9
⊢ 𝐷 = (ω ∖
{∅}) |
| 10 | | omex 9662 |
. . . . . . . . . 10
⊢ ω
∈ V |
| 11 | | difexg 5304 |
. . . . . . . . . 10
⊢ (ω
∈ V → (ω ∖ {∅}) ∈ V) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ (ω
∖ {∅}) ∈ V |
| 13 | 9, 12 | eqeltri 2831 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
| 14 | | zfregfr 9624 |
. . . . . . . 8
⊢ E Fr
𝐷 |
| 15 | 8, 13, 14 | bnj157 34895 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝐷 (∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛 ∈ 𝐷 ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) |
| 16 | | biid 261 |
. . . . . . . . . 10
⊢ ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 17 | | bnj852.2 |
. . . . . . . . . 10
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 18 | | biid 261 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) |
| 19 | 16, 17, 9, 18, 8 | bnj153 34916 |
. . . . . . . . 9
⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ ∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) |
| 20 | 16, 17, 9, 18, 8 | bnj601 34956 |
. . . . . . . . 9
⊢ (𝑛 ≠ 1o →
((𝑛 ∈ 𝐷 ∧ ∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) |
| 21 | 19, 20 | pm2.61ine 3016 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ ∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) |
| 22 | 21 | ex 412 |
. . . . . . 7
⊢ (𝑛 ∈ 𝐷 → (∀𝑧 ∈ 𝐷 (𝑧 E 𝑛 → [𝑧 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) |
| 23 | 15, 22 | mprg 3058 |
. . . . . 6
⊢
∀𝑛 ∈
𝐷 ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) |
| 24 | | r19.21v 3166 |
. . . . . 6
⊢
(∀𝑛 ∈
𝐷 ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) |
| 25 | 23, 24 | mpbi 230 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) |
| 26 | 7, 25 | syl 17 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) |
| 27 | | bnj602 34951 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅)) |
| 28 | 27 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 29 | | bnj852.1 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 30 | 28, 29 | bitr4di 289 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑)) |
| 31 | 30 | 3anbi2d 1443 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 32 | 31 | eubidv 2586 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 33 | 32 | ralbidv 3164 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 35 | 26, 34 | mpbid 232 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 36 | 4, 35 | bnj593 34781 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑥∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 37 | 36 | bnj937 34807 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |