Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Visualization version   GIF version

Theorem bnj852 33533
Description: Technical lemma for bnj69 33622. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj852.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj852.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj852 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj852
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2819 . . . . . 6 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 482 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
32ancri 550 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
43bnj534 33351 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
5 eleq1 2825 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
65anbi2d 629 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
76biimpar 478 . . . . 5 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (𝑅 FrSe 𝐴𝑥𝐴))
8 biid 260 . . . . . . . 8 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
9 bnj852.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
10 omex 9579 . . . . . . . . . 10 ω ∈ V
11 difexg 5284 . . . . . . . . . 10 (ω ∈ V → (ω ∖ {∅}) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 (ω ∖ {∅}) ∈ V
139, 12eqeltri 2834 . . . . . . . 8 𝐷 ∈ V
14 zfregfr 9541 . . . . . . . 8 E Fr 𝐷
158, 13, 14bnj157 33471 . . . . . . 7 (∀𝑛𝐷 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
16 biid 260 . . . . . . . . . 10 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj852.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 260 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
1916, 17, 9, 18, 8bnj153 33492 . . . . . . . . 9 (𝑛 = 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2016, 17, 9, 18, 8bnj601 33532 . . . . . . . . 9 (𝑛 ≠ 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2119, 20pm2.61ine 3028 . . . . . . . 8 ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2221ex 413 . . . . . . 7 (𝑛𝐷 → (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2315, 22mprg 3070 . . . . . 6 𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
24 r19.21v 3176 . . . . . 6 (∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2523, 24mpbi 229 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
267, 25syl 17 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
27 bnj602 33527 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
2827eqeq2d 2747 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
29 bnj852.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3028, 29bitr4di 288 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑))
31303anbi2d 1441 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓)))
3231eubidv 2584 . . . . . 6 (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3332ralbidv 3174 . . . . 5 (𝑥 = 𝑋 → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3433adantr 481 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3526, 34mpbid 231 . . 3 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
364, 35bnj593 33357 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
3736bnj937 33383 1 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2566  wral 3064  Vcvv 3445  [wsbc 3739  cdif 3907  c0 4282  {csn 4586   ciun 4954   class class class wbr 5105   E cep 5536  suc csuc 6319   Fn wfn 6491  cfv 6496  ωcom 7802  1oc1o 8405   predc-bnj14 33300   FrSe w-bnj15 33304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-bnj17 33299  df-bnj14 33301  df-bnj13 33303  df-bnj15 33305
This theorem is referenced by:  bnj864  33534  bnj865  33535  bnj906  33542
  Copyright terms: Public domain W3C validator