Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Visualization version   GIF version

Theorem bnj852 34897
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj852.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj852.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj852 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj852
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2826 . . . . . 6 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 481 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
32ancri 549 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
43bnj534 34715 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
5 eleq1 2832 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
65anbi2d 629 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
76biimpar 477 . . . . 5 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (𝑅 FrSe 𝐴𝑥𝐴))
8 biid 261 . . . . . . . 8 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
9 bnj852.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
10 omex 9712 . . . . . . . . . 10 ω ∈ V
11 difexg 5347 . . . . . . . . . 10 (ω ∈ V → (ω ∖ {∅}) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 (ω ∖ {∅}) ∈ V
139, 12eqeltri 2840 . . . . . . . 8 𝐷 ∈ V
14 zfregfr 9674 . . . . . . . 8 E Fr 𝐷
158, 13, 14bnj157 34835 . . . . . . 7 (∀𝑛𝐷 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
16 biid 261 . . . . . . . . . 10 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj852.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 261 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
1916, 17, 9, 18, 8bnj153 34856 . . . . . . . . 9 (𝑛 = 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2016, 17, 9, 18, 8bnj601 34896 . . . . . . . . 9 (𝑛 ≠ 1o → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2119, 20pm2.61ine 3031 . . . . . . . 8 ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2221ex 412 . . . . . . 7 (𝑛𝐷 → (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2315, 22mprg 3073 . . . . . 6 𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
24 r19.21v 3186 . . . . . 6 (∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2523, 24mpbi 230 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
267, 25syl 17 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
27 bnj602 34891 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
2827eqeq2d 2751 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
29 bnj852.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3028, 29bitr4di 289 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑))
31303anbi2d 1441 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓)))
3231eubidv 2589 . . . . . 6 (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3332ralbidv 3184 . . . . 5 (𝑥 = 𝑋 → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3433adantr 480 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3526, 34mpbid 232 . . 3 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
364, 35bnj593 34721 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
3736bnj937 34747 1 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wral 3067  Vcvv 3488  [wsbc 3804  cdif 3973  c0 4352  {csn 4648   ciun 5015   class class class wbr 5166   E cep 5598  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  1oc1o 8515   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by:  bnj864  34898  bnj865  34899  bnj906  34906
  Copyright terms: Public domain W3C validator