Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj525 Structured version   Visualization version   GIF version

Theorem bnj525 34213
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj525.1 𝐴 ∈ V
Assertion
Ref Expression
bnj525 ([𝐴 / 𝑥]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bnj525
StepHypRef Expression
1 bnj525.1 . 2 𝐴 ∈ V
2 sbcg 3856 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝐴 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  Vcvv 3473  [wsbc 3777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-clel 2809  df-sbc 3778
This theorem is referenced by:  bnj976  34252  bnj91  34336  bnj92  34337  bnj523  34362  bnj539  34366  bnj540  34367  bnj1040  34447
  Copyright terms: Public domain W3C validator