![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj525 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj525.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnj525 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj525.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcg 3856 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 Vcvv 3473 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2809 df-sbc 3778 |
This theorem is referenced by: bnj976 34252 bnj91 34336 bnj92 34337 bnj523 34362 bnj539 34366 bnj540 34367 bnj1040 34447 |
Copyright terms: Public domain | W3C validator |