Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj538 Structured version   Visualization version   GIF version

Theorem bnj538 32620
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypothesis
Ref Expression
bnj538.1 𝐴 ∈ V
Assertion
Ref Expression
bnj538 ([𝐴 / 𝑦]𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 [𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem bnj538
StepHypRef Expression
1 bnj538.1 . 2 𝐴 ∈ V
2 sbcralg 3803 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 [𝐴 / 𝑦]𝜑))
31, 2ax-mp 5 1 ([𝐴 / 𝑦]𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 [𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wral 3063  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424  df-sbc 3712
This theorem is referenced by:  bnj92  32742  bnj539  32771  bnj540  32772
  Copyright terms: Public domain W3C validator