Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj610 | Structured version Visualization version GIF version |
Description: Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable condition on 𝐴, 𝑥. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj610.1 | ⊢ 𝐴 ∈ V |
bnj610.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bnj610.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) |
bnj610.4 | ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) |
Ref | Expression |
---|---|
bnj610 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | bnj610.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) | |
3 | 1, 2 | sbcie 3759 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓′) |
4 | 3 | sbcbii 3776 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓′) |
5 | sbccow 3739 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
6 | bnj610.1 | . . 3 ⊢ 𝐴 ∈ V | |
7 | bnj610.4 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) | |
8 | 6, 7 | sbcie 3759 | . 2 ⊢ ([𝐴 / 𝑦]𝜓′ ↔ 𝜓) |
9 | 4, 5, 8 | 3bitr3i 301 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 |
This theorem is referenced by: bnj611 32898 bnj1000 32921 |
Copyright terms: Public domain | W3C validator |