| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj610 | Structured version Visualization version GIF version | ||
| Description: Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable condition on 𝐴, 𝑥. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj610.1 | ⊢ 𝐴 ∈ V |
| bnj610.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| bnj610.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) |
| bnj610.4 | ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bnj610 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | bnj610.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) | |
| 3 | 1, 2 | sbcie 3797 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓′) |
| 4 | 3 | sbcbii 3812 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓′) |
| 5 | sbccow 3778 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
| 6 | bnj610.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 7 | bnj610.4 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) | |
| 8 | 6, 7 | sbcie 3797 | . 2 ⊢ ([𝐴 / 𝑦]𝜓′ ↔ 𝜓) |
| 9 | 4, 5, 8 | 3bitr3i 301 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 [wsbc 3755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3756 |
| This theorem is referenced by: bnj611 34914 bnj1000 34937 |
| Copyright terms: Public domain | W3C validator |