Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1232 Structured version   Visualization version   GIF version

Theorem bnj1232 32783
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1232.1 (𝜑 ↔ (𝜓𝜒𝜃𝜏))
Assertion
Ref Expression
bnj1232 (𝜑𝜓)

Proof of Theorem bnj1232
StepHypRef Expression
1 bnj1232.1 . 2 (𝜑 ↔ (𝜓𝜒𝜃𝜏))
2 bnj642 32728 . 2 ((𝜓𝜒𝜃𝜏) → 𝜓)
31, 2sylbi 216 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w-bnj17 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-bnj17 32666
This theorem is referenced by:  bnj605  32887  bnj607  32896  bnj944  32918  bnj969  32926  bnj970  32927  bnj1001  32939  bnj1110  32962  bnj1118  32964  bnj1128  32970  bnj1145  32973  bnj1311  33004
  Copyright terms: Public domain W3C validator