![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1232 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1232.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) |
Ref | Expression |
---|---|
bnj1232 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1232.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) | |
2 | bnj642 31335 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜓) | |
3 | 1, 2 | sylbi 209 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w-bnj17 31272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 df-bnj17 31273 |
This theorem is referenced by: bnj605 31494 bnj607 31503 bnj944 31525 bnj969 31533 bnj970 31534 bnj1001 31545 bnj1110 31567 bnj1118 31569 bnj1128 31575 bnj1145 31578 bnj1311 31609 |
Copyright terms: Public domain | W3C validator |