Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj837 Structured version   Visualization version   GIF version

Theorem bnj837 32641
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj837.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj837.2 (𝜒𝜏)
Assertion
Ref Expression
bnj837 (𝜂𝜏)

Proof of Theorem bnj837
StepHypRef Expression
1 bnj837.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj837.2 . . 3 (𝜒𝜏)
323ad2ant3 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 216 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  bnj1379  32710  bnj557  32781  bnj1175  32884  bnj1189  32889  bnj1417  32921
  Copyright terms: Public domain W3C validator