Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj836 Structured version   Visualization version   GIF version

Theorem bnj836 32740
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj836.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj836.2 (𝜓𝜏)
Assertion
Ref Expression
bnj836 (𝜂𝜏)

Proof of Theorem bnj836
StepHypRef Expression
1 bnj836.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj836.2 . . 3 (𝜓𝜏)
323ad2ant2 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 216 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  bnj1379  32810  bnj1175  32984  bnj1286  32999  bnj1450  33030  bnj1501  33047  bnj1523  33051
  Copyright terms: Public domain W3C validator