Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj557 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj557.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj557.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
bnj557.17 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj557.18 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj557.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
bnj557.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
bnj557.21 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj557.22 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj557.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj557.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj557.25 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
bnj557.28 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj557.29 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj557.36 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj557 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘𝑚) = 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3an4anass 1103 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁))) | |
2 | bnj557.18 | . . . . . . . 8 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
3 | bnj557.19 | . . . . . . . 8 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
4 | 2, 3 | bnj556 32780 | . . . . . . 7 ⊢ (𝜂 → 𝜎) |
5 | 4 | 3anim3i 1152 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎)) |
6 | bnj557.20 | . . . . . . 7 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
7 | vex 3426 | . . . . . . . 8 ⊢ 𝑖 ∈ V | |
8 | 7 | bnj216 32611 | . . . . . . 7 ⊢ (𝑚 = suc 𝑖 → 𝑖 ∈ 𝑚) |
9 | 6, 8 | bnj837 32641 | . . . . . 6 ⊢ (𝜁 → 𝑖 ∈ 𝑚) |
10 | 5, 9 | anim12i 612 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚)) |
11 | 1, 10 | sylbir 234 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚)) |
12 | 3 | bnj1254 32689 | . . . . . 6 ⊢ (𝜂 → 𝑚 = suc 𝑝) |
13 | 6 | simp3bi 1145 | . . . . . 6 ⊢ (𝜁 → 𝑚 = suc 𝑖) |
14 | bnj551 32622 | . . . . . 6 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | |
15 | 12, 13, 14 | syl2an 595 | . . . . 5 ⊢ ((𝜂 ∧ 𝜁) → 𝑝 = 𝑖) |
16 | 15 | adantl 481 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝑝 = 𝑖) |
17 | 11, 16 | jca 511 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) ∧ 𝑝 = 𝑖)) |
18 | bnj256 32585 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁))) | |
19 | df-3an 1087 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) ↔ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) ∧ 𝑝 = 𝑖)) | |
20 | 17, 18, 19 | 3imtr4i 291 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖)) |
21 | bnj557.28 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
22 | bnj557.29 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
23 | bnj557.3 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
24 | bnj557.16 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | |
25 | bnj557.17 | . . 3 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
26 | bnj557.22 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
27 | bnj557.25 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
28 | bnj557.21 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
29 | bnj557.23 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
30 | bnj557.24 | . . 3 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
31 | bnj557.36 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
32 | 21, 22, 23, 24, 25, 2, 26, 27, 28, 29, 30, 31 | bnj553 32778 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
33 | 20, 32 | syl 17 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘𝑚) = 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ∪ cun 3881 ∅c0 4253 {csn 4558 〈cop 4564 ∪ ciun 4921 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 ∧ w-bnj17 32565 predc-bnj14 32567 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-id 5480 df-eprel 5486 df-fr 5535 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-bnj17 32566 |
This theorem is referenced by: bnj558 32782 |
Copyright terms: Public domain | W3C validator |