Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj557 Structured version   Visualization version   GIF version

Theorem bnj557 32781
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj557.3 𝐷 = (ω ∖ {∅})
bnj557.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj557.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj557.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj557.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj557.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj557.21 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj557.22 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj557.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj557.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj557.25 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj557.28 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj557.29 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj557.36 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj557 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj557
StepHypRef Expression
1 3an4anass 1103 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)))
2 bnj557.18 . . . . . . . 8 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
3 bnj557.19 . . . . . . . 8 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
42, 3bnj556 32780 . . . . . . 7 (𝜂𝜎)
543anim3i 1152 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → (𝑅 FrSe 𝐴𝜏𝜎))
6 bnj557.20 . . . . . . 7 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
7 vex 3426 . . . . . . . 8 𝑖 ∈ V
87bnj216 32611 . . . . . . 7 (𝑚 = suc 𝑖𝑖𝑚)
96, 8bnj837 32641 . . . . . 6 (𝜁𝑖𝑚)
105, 9anim12i 612 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚))
111, 10sylbir 234 . . . 4 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚))
123bnj1254 32689 . . . . . 6 (𝜂𝑚 = suc 𝑝)
136simp3bi 1145 . . . . . 6 (𝜁𝑚 = suc 𝑖)
14 bnj551 32622 . . . . . 6 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
1512, 13, 14syl2an 595 . . . . 5 ((𝜂𝜁) → 𝑝 = 𝑖)
1615adantl 481 . . . 4 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → 𝑝 = 𝑖)
1711, 16jca 511 . . 3 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) ∧ 𝑝 = 𝑖))
18 bnj256 32585 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ ((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)))
19 df-3an 1087 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) ↔ (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) ∧ 𝑝 = 𝑖))
2017, 18, 193imtr4i 291 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖))
21 bnj557.28 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
22 bnj557.29 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
23 bnj557.3 . . 3 𝐷 = (ω ∖ {∅})
24 bnj557.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
25 bnj557.17 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
26 bnj557.22 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
27 bnj557.25 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
28 bnj557.21 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
29 bnj557.23 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
30 bnj557.24 . . 3 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
31 bnj557.36 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
3221, 22, 23, 24, 25, 2, 26, 27, 28, 29, 30, 31bnj553 32778 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
3320, 32syl 17 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  c0 4253  {csn 4558  cop 4564   ciun 4921  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  w-bnj17 32565   predc-bnj14 32567   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-eprel 5486  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-bnj17 32566
This theorem is referenced by:  bnj558  32782
  Copyright terms: Public domain W3C validator