![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj557 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34230. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj557.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj557.16 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) |
bnj557.17 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj557.18 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj557.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
bnj557.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
bnj557.21 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj557.22 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj557.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj557.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj557.25 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) |
bnj557.28 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj557.29 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj557.36 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj557 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘𝑚) = 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3an4anass 1103 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁))) | |
2 | bnj557.18 | . . . . . . . 8 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
3 | bnj557.19 | . . . . . . . 8 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
4 | 2, 3 | bnj556 34209 | . . . . . . 7 ⊢ (𝜂 → 𝜎) |
5 | 4 | 3anim3i 1152 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎)) |
6 | bnj557.20 | . . . . . . 7 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
7 | vex 3476 | . . . . . . . 8 ⊢ 𝑖 ∈ V | |
8 | 7 | bnj216 34041 | . . . . . . 7 ⊢ (𝑚 = suc 𝑖 → 𝑖 ∈ 𝑚) |
9 | 6, 8 | bnj837 34070 | . . . . . 6 ⊢ (𝜁 → 𝑖 ∈ 𝑚) |
10 | 5, 9 | anim12i 611 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚)) |
11 | 1, 10 | sylbir 234 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚)) |
12 | 3 | bnj1254 34118 | . . . . . 6 ⊢ (𝜂 → 𝑚 = suc 𝑝) |
13 | 6 | simp3bi 1145 | . . . . . 6 ⊢ (𝜁 → 𝑚 = suc 𝑖) |
14 | bnj551 34051 | . . . . . 6 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | |
15 | 12, 13, 14 | syl2an 594 | . . . . 5 ⊢ ((𝜂 ∧ 𝜁) → 𝑝 = 𝑖) |
16 | 15 | adantl 480 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝑝 = 𝑖) |
17 | 11, 16 | jca 510 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) ∧ 𝑝 = 𝑖)) |
18 | bnj256 34015 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁))) | |
19 | df-3an 1087 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) ↔ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚) ∧ 𝑝 = 𝑖)) | |
20 | 17, 18, 19 | 3imtr4i 291 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖)) |
21 | bnj557.28 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
22 | bnj557.29 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
23 | bnj557.3 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
24 | bnj557.16 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) | |
25 | bnj557.17 | . . 3 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
26 | bnj557.22 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
27 | bnj557.25 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩}) | |
28 | bnj557.21 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
29 | bnj557.23 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
30 | bnj557.24 | . . 3 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
31 | bnj557.36 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
32 | 21, 22, 23, 24, 25, 2, 26, 27, 28, 29, 30, 31 | bnj553 34207 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖) → (𝐺‘𝑚) = 𝐿) |
33 | 20, 32 | syl 17 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘𝑚) = 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∖ cdif 3944 ∪ cun 3945 ∅c0 4321 {csn 4627 ⟨cop 4633 ∪ ciun 4996 suc csuc 6365 Fn wfn 6537 ‘cfv 6542 ωcom 7857 ∧ w-bnj17 33995 predc-bnj14 33997 FrSe w-bnj15 34001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-reg 9589 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-id 5573 df-eprel 5579 df-fr 5630 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-bnj17 33996 |
This theorem is referenced by: bnj558 34211 |
Copyright terms: Public domain | W3C validator |