Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj557 Structured version   Visualization version   GIF version

Theorem bnj557 32173
Description: Technical lemma for bnj852 32193. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj557.3 𝐷 = (ω ∖ {∅})
bnj557.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj557.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj557.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj557.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj557.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj557.21 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj557.22 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj557.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj557.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj557.25 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj557.28 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj557.29 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj557.36 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj557 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj557
StepHypRef Expression
1 3an4anass 1101 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)))
2 bnj557.18 . . . . . . . 8 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
3 bnj557.19 . . . . . . . 8 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
42, 3bnj556 32172 . . . . . . 7 (𝜂𝜎)
543anim3i 1150 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → (𝑅 FrSe 𝐴𝜏𝜎))
6 bnj557.20 . . . . . . 7 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
7 vex 3497 . . . . . . . 8 𝑖 ∈ V
87bnj216 32002 . . . . . . 7 (𝑚 = suc 𝑖𝑖𝑚)
96, 8bnj837 32032 . . . . . 6 (𝜁𝑖𝑚)
105, 9anim12i 614 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚))
111, 10sylbir 237 . . . 4 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚))
123bnj1254 32081 . . . . . 6 (𝜂𝑚 = suc 𝑝)
136simp3bi 1143 . . . . . 6 (𝜁𝑚 = suc 𝑖)
14 bnj551 32013 . . . . . 6 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
1512, 13, 14syl2an 597 . . . . 5 ((𝜂𝜁) → 𝑝 = 𝑖)
1615adantl 484 . . . 4 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → 𝑝 = 𝑖)
1711, 16jca 514 . . 3 (((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)) → (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) ∧ 𝑝 = 𝑖))
18 bnj256 31976 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ ((𝑅 FrSe 𝐴𝜏) ∧ (𝜂𝜁)))
19 df-3an 1085 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) ↔ (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) ∧ 𝑝 = 𝑖))
2017, 18, 193imtr4i 294 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖))
21 bnj557.28 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
22 bnj557.29 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
23 bnj557.3 . . 3 𝐷 = (ω ∖ {∅})
24 bnj557.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
25 bnj557.17 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
26 bnj557.22 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
27 bnj557.25 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
28 bnj557.21 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
29 bnj557.23 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
30 bnj557.24 . . 3 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
31 bnj557.36 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
3221, 22, 23, 24, 25, 2, 26, 27, 28, 29, 30, 31bnj553 32170 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
3320, 32syl 17 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cdif 3933  cun 3934  c0 4291  {csn 4567  cop 4573   ciun 4919  suc csuc 6193   Fn wfn 6350  cfv 6355  ωcom 7580  w-bnj17 31956   predc-bnj14 31958   FrSe w-bnj15 31962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461  ax-reg 9056
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-id 5460  df-eprel 5465  df-fr 5514  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-bnj17 31957
This theorem is referenced by:  bnj558  32174
  Copyright terms: Public domain W3C validator