Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1189 Structured version   Visualization version   GIF version

Theorem bnj1189 31676
Description: Technical lemma for bnj69 31677. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1189.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1189.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
bnj1189.3 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
bnj1189 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1189
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1189.1 . . . . . 6 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
2 n0 4159 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32biimpi 208 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
41, 3bnj837 31430 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐵)
54ancli 544 . . . 4 (𝜑 → (𝜑 ∧ ∃𝑥 𝑥𝐵))
6 19.42v 1996 . . . 4 (∃𝑥(𝜑𝑥𝐵) ↔ (𝜑 ∧ ∃𝑥 𝑥𝐵))
75, 6sylibr 226 . . 3 (𝜑 → ∃𝑥(𝜑𝑥𝐵))
8 3simpc 1143 . . . . . . . . 9 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵𝜒))
9 bnj1189.3 . . . . . . . . . 10 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
109anbi2i 616 . . . . . . . . 9 ((𝑥𝐵𝜒) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
118, 10sylib 210 . . . . . . . 8 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
12 19.8a 2166 . . . . . . . 8 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1311, 12syl 17 . . . . . . 7 ((𝜑𝑥𝐵𝜒) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 df-rex 3096 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1513, 14sylibr 226 . . . . . 6 ((𝜑𝑥𝐵𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
16153comr 1116 . . . . 5 ((𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
17163expib 1113 . . . 4 (𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
18 simp1 1127 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝜑)
19 simp2 1128 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝑥𝐵)
20 rexnal 3176 . . . . . . . . . . . . . . . . . 18 (∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
2120bicomi 216 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2221, 9xchnxbir 325 . . . . . . . . . . . . . . . 16 𝜒 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
23 notnotb 307 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥 ↔ ¬ ¬ 𝑦𝑅𝑥)
2423rexbii 3224 . . . . . . . . . . . . . . . 16 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2522, 24bitr4i 270 . . . . . . . . . . . . . . 15 𝜒 ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
2625biimpi 208 . . . . . . . . . . . . . 14 𝜒 → ∃𝑦𝐵 𝑦𝑅𝑥)
2726bnj1196 31464 . . . . . . . . . . . . 13 𝜒 → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
28273ad2ant3 1126 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
29 3anass 1079 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
3029exbii 1892 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ ∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
31 19.42v 1996 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3230, 31bitri 267 . . . . . . . . . . . 12 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3319, 28, 32sylanbrc 578 . . . . . . . . . . 11 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
34 bnj1189.2 . . . . . . . . . . 11 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
3533, 34bnj1198 31465 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝜓)
36 19.42v 1996 . . . . . . . . . 10 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
3718, 35, 36sylanbrc 578 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝜑𝜓))
381, 34bnj1190 31675 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
3937, 38bnj593 31414 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4039bnj937 31441 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4140bnj1185 31463 . . . . . 6 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
42413comr 1116 . . . . 5 ((¬ 𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
43423expib 1113 . . . 4 𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
4417, 43pm2.61i 177 . . 3 ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
457, 44bnj593 31414 . 2 (𝜑 → ∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
46 nfre1 3186 . . 3 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥
474619.9 2190 . 2 (∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
4845, 47sylib 210 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071  wex 1823  wcel 2107  wne 2969  wral 3090  wrex 3091  wss 3792  c0 4141   class class class wbr 4886   FrSe w-bnj15 31360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-1o 7843  df-bnj17 31355  df-bnj14 31357  df-bnj13 31359  df-bnj15 31361  df-bnj18 31363  df-bnj19 31365
This theorem is referenced by:  bnj69  31677
  Copyright terms: Public domain W3C validator