Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1189 Structured version   Visualization version   GIF version

Theorem bnj1189 32968
Description: Technical lemma for bnj69 32969. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1189.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1189.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
bnj1189.3 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
bnj1189 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1189
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1189.1 . . . . . 6 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
2 n0 4285 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32biimpi 215 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
41, 3bnj837 32720 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐵)
54ancli 548 . . . 4 (𝜑 → (𝜑 ∧ ∃𝑥 𝑥𝐵))
6 19.42v 1960 . . . 4 (∃𝑥(𝜑𝑥𝐵) ↔ (𝜑 ∧ ∃𝑥 𝑥𝐵))
75, 6sylibr 233 . . 3 (𝜑 → ∃𝑥(𝜑𝑥𝐵))
8 3simpc 1148 . . . . . . . . 9 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵𝜒))
9 bnj1189.3 . . . . . . . . . 10 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
109anbi2i 622 . . . . . . . . 9 ((𝑥𝐵𝜒) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
118, 10sylib 217 . . . . . . . 8 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
121119.8ad 2178 . . . . . . 7 ((𝜑𝑥𝐵𝜒) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
13 df-rex 3071 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1412, 13sylibr 233 . . . . . 6 ((𝜑𝑥𝐵𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
15143comr 1123 . . . . 5 ((𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
16153expib 1120 . . . 4 (𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
17 simp1 1134 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝜑)
18 simp2 1135 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝑥𝐵)
19 rexnal 3167 . . . . . . . . . . . . . . . . . 18 (∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
2019bicomi 223 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2120, 9xchnxbir 332 . . . . . . . . . . . . . . . 16 𝜒 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
22 notnotb 314 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥 ↔ ¬ ¬ 𝑦𝑅𝑥)
2322rexbii 3179 . . . . . . . . . . . . . . . 16 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2421, 23bitr4i 277 . . . . . . . . . . . . . . 15 𝜒 ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
2524biimpi 215 . . . . . . . . . . . . . 14 𝜒 → ∃𝑦𝐵 𝑦𝑅𝑥)
2625bnj1196 32753 . . . . . . . . . . . . 13 𝜒 → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
27263ad2ant3 1133 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
28 3anass 1093 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
2928exbii 1853 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ ∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
30 19.42v 1960 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3129, 30bitri 274 . . . . . . . . . . . 12 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3218, 27, 31sylanbrc 582 . . . . . . . . . . 11 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
33 bnj1189.2 . . . . . . . . . . 11 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
3432, 33bnj1198 32754 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝜓)
35 19.42v 1960 . . . . . . . . . 10 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
3617, 34, 35sylanbrc 582 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝜑𝜓))
371, 33bnj1190 32967 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
3836, 37bnj593 32704 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
3938bnj937 32730 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4039bnj1185 32752 . . . . . 6 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
41403comr 1123 . . . . 5 ((¬ 𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
42413expib 1120 . . . 4 𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
4316, 42pm2.61i 182 . . 3 ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
447, 43bnj593 32704 . 2 (𝜑 → ∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
45 nfre1 3236 . . 3 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥
464519.9 2201 . 2 (∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
4744, 46sylib 217 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wex 1785  wcel 2109  wne 2944  wral 3065  wrex 3066  wss 3891  c0 4261   class class class wbr 5078   FrSe w-bnj15 32650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-reg 9312  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-bnj17 32645  df-bnj14 32647  df-bnj13 32649  df-bnj15 32651  df-bnj18 32653  df-bnj19 32655
This theorem is referenced by:  bnj69  32969
  Copyright terms: Public domain W3C validator