Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj887 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj887.1 | ⊢ (𝜑 ↔ 𝜑′) |
bnj887.2 | ⊢ (𝜓 ↔ 𝜓′) |
bnj887.3 | ⊢ (𝜒 ↔ 𝜒′) |
bnj887.4 | ⊢ (𝜃 ↔ 𝜃′) |
Ref | Expression |
---|---|
bnj887 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′ ∧ 𝜃′)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj887.1 | . . . 4 ⊢ (𝜑 ↔ 𝜑′) | |
2 | bnj887.2 | . . . 4 ⊢ (𝜓 ↔ 𝜓′) | |
3 | bnj887.3 | . . . 4 ⊢ (𝜒 ↔ 𝜒′) | |
4 | 1, 2, 3 | 3anbi123i 1153 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) |
5 | bnj887.4 | . . 3 ⊢ (𝜃 ↔ 𝜃′) | |
6 | 4, 5 | anbi12i 630 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝜒′) ∧ 𝜃′)) |
7 | df-bnj17 32178 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
8 | df-bnj17 32178 | . 2 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝜒′ ∧ 𝜃′) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝜒′) ∧ 𝜃′)) | |
9 | 6, 7, 8 | 3bitr4i 307 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′ ∧ 𝜃′)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 ∧ w3a 1085 ∧ w-bnj17 32177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-3an 1087 df-bnj17 32178 |
This theorem is referenced by: bnj1040 32465 bnj1128 32483 |
Copyright terms: Public domain | W3C validator |