Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1128 Structured version   Visualization version   GIF version

Theorem bnj1128 32257
Description: Technical lemma for bnj69 32277. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1128.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1128.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1128.3 𝐷 = (ω ∖ {∅})
bnj1128.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1128.5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1128.6 (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))
bnj1128.7 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
bnj1128.8 (𝜑′[𝑗 / 𝑖]𝜑)
bnj1128.9 (𝜓′[𝑗 / 𝑖]𝜓)
bnj1128.10 (𝜒′[𝑗 / 𝑖]𝜒)
bnj1128.11 (𝜃′[𝑗 / 𝑖]𝜃)
Assertion
Ref Expression
bnj1128 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑛,𝑦   𝐷,𝑖,𝑗,𝑦   𝑅,𝑓,𝑖,𝑗,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝑓,𝑌,𝑖,𝑛,𝑦   𝜒,𝑗   𝜑,𝑖,𝑦   𝜃,𝑗
Allowed substitution hints:   𝜑(𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝜏(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑛)   𝑋(𝑗)   𝑌(𝑗)   𝜑′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜓′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜃′(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1128
StepHypRef Expression
1 bnj1128.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1128.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1128.3 . . . 4 𝐷 = (ω ∖ {∅})
4 bnj1128.4 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
5 bnj1128.5 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
61, 2, 3, 4, 5bnj981 32217 . . 3 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)))
7 simp1 1132 . . . . . 6 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝜒)
8 simp2 1133 . . . . . 6 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑖𝑛)
9 bnj1128.7 . . . . . . . . 9 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
10 nfv 1911 . . . . . . . . . . . . . . 15 𝑗 𝑖𝑛
11 nfra1 3219 . . . . . . . . . . . . . . . 16 𝑗𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃)
129, 11nfxfr 1849 . . . . . . . . . . . . . . 15 𝑗𝜏
13 nfv 1911 . . . . . . . . . . . . . . 15 𝑗𝜒
1410, 12, 13nf3an 1898 . . . . . . . . . . . . . 14 𝑗(𝑖𝑛𝜏𝜒)
15 nfv 1911 . . . . . . . . . . . . . 14 𝑗(𝑓𝑖) ⊆ 𝐴
1614, 15nfim 1893 . . . . . . . . . . . . 13 𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
1716nf5ri 2191 . . . . . . . . . . . 12 (((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴) → ∀𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴))
183bnj1098 32050 . . . . . . . . . . . . . . . . 17 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
19 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑖 ≠ ∅)
20 simpr1 1190 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑖𝑛)
215bnj1232 32070 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑛𝐷)
22213ad2ant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑛𝜏𝜒) → 𝑛𝐷)
2322adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → 𝑛𝐷)
2419, 20, 233jca 1124 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))
2518, 24bnj1101 32051 . . . . . . . . . . . . . . . 16 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑗𝑛𝑖 = suc 𝑗))
26 ancl 547 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑗𝑛𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
2725, 26bnj101 31988 . . . . . . . . . . . . . . 15 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
28 df-3an 1085 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
2928imbi2i 338 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))) ↔ ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
3029exbii 1844 . . . . . . . . . . . . . . 15 (∃𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
3127, 30mpbir 233 . . . . . . . . . . . . . 14 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
32 bnj213 32149 . . . . . . . . . . . . . . . 16 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
3332bnj226 31999 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
34 simp21 1202 . . . . . . . . . . . . . . . 16 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑖𝑛)
35 simp3r 1198 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑖 = suc 𝑗)
36 biid 263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝐷𝑛𝐷)
37 biid 263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑛𝑓 Fn 𝑛)
38 bnj1128.8 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑′[𝑗 / 𝑖]𝜑)
39 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑗 ∈ V
40 sbcg 3846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ V → ([𝑗 / 𝑖]𝜑𝜑))
4139, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ([𝑗 / 𝑖]𝜑𝜑)
4238, 41bitr2i 278 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝜑′)
43 bnj1128.9 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜓′[𝑗 / 𝑖]𝜓)
442, 43bnj1039 32238 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
452, 44bitr4i 280 . . . . . . . . . . . . . . . . . . . . . 22 (𝜓𝜓′)
4636, 37, 42, 45bnj887 32031 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
47 bnj1128.10 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒′[𝑗 / 𝑖]𝜒)
4838, 43, 5, 47bnj1040 32239 . . . . . . . . . . . . . . . . . . . . 21 (𝜒′ ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
4946, 5, 483bitr4i 305 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜒′)
5048bnj1254 32076 . . . . . . . . . . . . . . . . . . . 20 (𝜒′𝜓′)
5149, 50sylbi 219 . . . . . . . . . . . . . . . . . . 19 (𝜒𝜓′)
52513ad2ant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑛𝜏𝜒) → 𝜓′)
53523ad2ant2 1130 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝜓′)
54 simp3l 1197 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑗𝑛)
55223ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑛𝐷)
563bnj923 32034 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐷𝑛 ∈ ω)
57 elnn 7584 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑛𝑛 ∈ ω) → 𝑗 ∈ ω)
5856, 57sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑛𝑛𝐷) → 𝑗 ∈ ω)
5954, 55, 58syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → 𝑗 ∈ ω)
6044bnj589 32176 . . . . . . . . . . . . . . . . . . 19 (𝜓′ ↔ ∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
61 rsp 3205 . . . . . . . . . . . . . . . . . . 19 (∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
6260, 61sylbi 219 . . . . . . . . . . . . . . . . . 18 (𝜓′ → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
63 eleq1 2900 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = suc 𝑗 → (𝑖𝑛 ↔ suc 𝑗𝑛))
64 fveqeq2 6673 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
6563, 64imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑖 = suc 𝑗 → ((𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
6665imbi2d 343 . . . . . . . . . . . . . . . . . 18 (𝑖 = suc 𝑗 → ((𝑗 ∈ ω → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))))
6762, 66syl5ibr 248 . . . . . . . . . . . . . . . . 17 (𝑖 = suc 𝑗 → (𝜓′ → (𝑗 ∈ ω → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))))
6835, 53, 59, 67syl3c 66 . . . . . . . . . . . . . . . 16 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑖𝑛 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
6934, 68mpd 15 . . . . . . . . . . . . . . 15 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
7033, 69bnj1262 32077 . . . . . . . . . . . . . 14 ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)) → (𝑓𝑖) ⊆ 𝐴)
7131, 70bnj1023 32047 . . . . . . . . . . . . 13 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑓𝑖) ⊆ 𝐴)
725bnj1247 32075 . . . . . . . . . . . . . . 15 (𝜒𝜑)
73723ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝑖𝑛𝜏𝜒) → 𝜑)
74 bnj213 32149 . . . . . . . . . . . . . . 15 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
75 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑖 = ∅ → (𝑓𝑖) = (𝑓‘∅))
761biimpi 218 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7775, 76sylan9eq 2876 . . . . . . . . . . . . . . 15 ((𝑖 = ∅ ∧ 𝜑) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
7874, 77bnj1262 32077 . . . . . . . . . . . . . 14 ((𝑖 = ∅ ∧ 𝜑) → (𝑓𝑖) ⊆ 𝐴)
7973, 78sylan2 594 . . . . . . . . . . . . 13 ((𝑖 = ∅ ∧ (𝑖𝑛𝜏𝜒)) → (𝑓𝑖) ⊆ 𝐴)
8071, 79bnj1109 32053 . . . . . . . . . . . 12 𝑗((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
8117, 80bnj1131 32054 . . . . . . . . . . 11 ((𝑖𝑛𝜏𝜒) → (𝑓𝑖) ⊆ 𝐴)
82813expia 1117 . . . . . . . . . 10 ((𝑖𝑛𝜏) → (𝜒 → (𝑓𝑖) ⊆ 𝐴))
83 bnj1128.6 . . . . . . . . . 10 (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))
8482, 83sylibr 236 . . . . . . . . 9 ((𝑖𝑛𝜏) → 𝜃)
853, 5, 9, 84bnj1133 32256 . . . . . . . 8 (𝜒 → ∀𝑖𝑛 𝜃)
8683ralbii 3165 . . . . . . . 8 (∀𝑖𝑛 𝜃 ↔ ∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴))
8785, 86sylib 220 . . . . . . 7 (𝜒 → ∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴))
88 rsp 3205 . . . . . . 7 (∀𝑖𝑛 (𝜒 → (𝑓𝑖) ⊆ 𝐴) → (𝑖𝑛 → (𝜒 → (𝑓𝑖) ⊆ 𝐴)))
8987, 88syl 17 . . . . . 6 (𝜒 → (𝑖𝑛 → (𝜒 → (𝑓𝑖) ⊆ 𝐴)))
907, 8, 7, 89syl3c 66 . . . . 5 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → (𝑓𝑖) ⊆ 𝐴)
91 simp3 1134 . . . . 5 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑌 ∈ (𝑓𝑖))
9290, 91sseldd 3967 . . . 4 ((𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → 𝑌𝐴)
93922eximi 1832 . . 3 (∃𝑛𝑖(𝜒𝑖𝑛𝑌 ∈ (𝑓𝑖)) → ∃𝑛𝑖 𝑌𝐴)
946, 93bnj593 32011 . 2 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖 𝑌𝐴)
95 19.9v 1984 . . 3 (∃𝑓𝑛𝑖 𝑌𝐴 ↔ ∃𝑛𝑖 𝑌𝐴)
96 19.9v 1984 . . 3 (∃𝑛𝑖 𝑌𝐴 ↔ ∃𝑖 𝑌𝐴)
97 19.9v 1984 . . 3 (∃𝑖 𝑌𝐴𝑌𝐴)
9895, 96, 973bitri 299 . 2 (∃𝑓𝑛𝑖 𝑌𝐴𝑌𝐴)
9994, 98sylib 220 1 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  [wsbc 3771  cdif 3932  wss 3935  c0 4290  {csn 4560   ciun 4911   class class class wbr 5058   E cep 5458  suc csuc 6187   Fn wfn 6344  cfv 6349  ωcom 7574  w-bnj17 31951   predc-bnj14 31953   trClc-bnj18 31959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fn 6352  df-fv 6357  df-om 7575  df-bnj17 31952  df-bnj14 31954  df-bnj18 31960
This theorem is referenced by:  bnj1127  32258
  Copyright terms: Public domain W3C validator