| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj771 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj771.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
| bnj771.2 | ⊢ (𝜒 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj771 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj771.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | bnj771.2 | . . 3 ⊢ (𝜒 → 𝜏) | |
| 3 | 2 | bnj707 34744 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w-bnj17 34675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-bnj17 34676 |
| This theorem is referenced by: bnj1247 34797 bnj996 34945 bnj1097 34970 bnj1145 34982 bnj1259 35005 bnj1296 35010 bnj1450 35039 |
| Copyright terms: Public domain | W3C validator |