![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj918 | ⊢ 𝐺 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | vex 3485 | . . 3 ⊢ 𝑓 ∈ V | |
3 | snex 5445 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
4 | 2, 3 | unex 7770 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
5 | 1, 4 | eqeltri 2837 | 1 ⊢ 𝐺 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 {csn 4634 〈cop 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-sn 4635 df-pr 4637 df-uni 4916 |
This theorem is referenced by: bnj528 34896 bnj929 34943 bnj965 34949 bnj910 34955 bnj985v 34960 bnj985 34961 bnj999 34965 bnj1018g 34970 bnj1018 34971 bnj907 34974 |
Copyright terms: Public domain | W3C validator |