Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj918 Structured version   Visualization version   GIF version

Theorem bnj918 33765
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj918.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj918 𝐺 ∈ V

Proof of Theorem bnj918
StepHypRef Expression
1 bnj918.1 . 2 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 vex 3478 . . 3 𝑓 ∈ V
3 snex 5430 . . 3 {⟨𝑛, 𝐶⟩} ∈ V
42, 3unex 7729 . 2 (𝑓 ∪ {⟨𝑛, 𝐶⟩}) ∈ V
51, 4eqeltri 2829 1 𝐺 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  cun 3945  {csn 4627  cop 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by:  bnj528  33888  bnj929  33935  bnj965  33941  bnj910  33947  bnj985v  33952  bnj985  33953  bnj999  33957  bnj1018g  33962  bnj1018  33963  bnj907  33966
  Copyright terms: Public domain W3C validator