Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj918 | ⊢ 𝐺 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | vex 3436 | . . 3 ⊢ 𝑓 ∈ V | |
3 | snex 5354 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
4 | 2, 3 | unex 7596 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 𝐺 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: bnj528 32869 bnj929 32916 bnj965 32922 bnj910 32928 bnj985v 32933 bnj985 32934 bnj999 32938 bnj1018g 32943 bnj1018 32944 bnj907 32947 |
Copyright terms: Public domain | W3C validator |