Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj918 Structured version   Visualization version   GIF version

Theorem bnj918 34734
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj918.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj918 𝐺 ∈ V

Proof of Theorem bnj918
StepHypRef Expression
1 bnj918.1 . 2 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 vex 3486 . . 3 𝑓 ∈ V
3 snex 5454 . . 3 {⟨𝑛, 𝐶⟩} ∈ V
42, 3unex 7775 . 2 (𝑓 ∪ {⟨𝑛, 𝐶⟩}) ∈ V
51, 4eqeltri 2834 1 𝐺 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2103  Vcvv 3482  cun 3968  {csn 4648  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3484  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by:  bnj528  34857  bnj929  34904  bnj965  34910  bnj910  34916  bnj985v  34921  bnj985  34922  bnj999  34926  bnj1018g  34931  bnj1018  34932  bnj907  34935
  Copyright terms: Public domain W3C validator