| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj918 | ⊢ 𝐺 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | vex 3459 | . . 3 ⊢ 𝑓 ∈ V | |
| 3 | snex 5399 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
| 4 | 2, 3 | unex 7727 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 𝐺 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 {csn 4597 〈cop 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-uni 4880 |
| This theorem is referenced by: bnj528 34887 bnj929 34934 bnj965 34940 bnj910 34946 bnj985v 34951 bnj985 34952 bnj999 34956 bnj1018g 34961 bnj1018 34962 bnj907 34965 |
| Copyright terms: Public domain | W3C validator |