Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj918 | ⊢ 𝐺 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | vex 3414 | . . 3 ⊢ 𝑓 ∈ V | |
3 | snex 5298 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
4 | 2, 3 | unex 7465 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
5 | 1, 4 | eqeltri 2849 | 1 ⊢ 𝐺 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∪ cun 3857 {csn 4520 〈cop 4526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4521 df-pr 4523 df-uni 4797 |
This theorem is referenced by: bnj528 32379 bnj929 32426 bnj965 32432 bnj910 32438 bnj985v 32443 bnj985 32444 bnj999 32448 bnj1018g 32453 bnj1018 32454 bnj907 32457 |
Copyright terms: Public domain | W3C validator |