| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj918 | ⊢ 𝐺 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | vex 3467 | . . 3 ⊢ 𝑓 ∈ V | |
| 3 | snex 5416 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
| 4 | 2, 3 | unex 7745 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 𝐺 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 {csn 4606 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 |
| This theorem is referenced by: bnj528 34837 bnj929 34884 bnj965 34890 bnj910 34896 bnj985v 34901 bnj985 34902 bnj999 34906 bnj1018g 34911 bnj1018 34912 bnj907 34915 |
| Copyright terms: Public domain | W3C validator |