| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj918 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj918.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj918 | ⊢ 𝐺 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj918.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | vex 3440 | . . 3 ⊢ 𝑓 ∈ V | |
| 3 | snex 5372 | . . 3 ⊢ {〈𝑛, 𝐶〉} ∈ V | |
| 4 | 2, 3 | unex 7677 | . 2 ⊢ (𝑓 ∪ {〈𝑛, 𝐶〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 𝐺 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4573 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: bnj528 34901 bnj929 34948 bnj965 34954 bnj910 34960 bnj985v 34965 bnj985 34966 bnj999 34970 bnj1018g 34975 bnj1018 34976 bnj907 34979 |
| Copyright terms: Public domain | W3C validator |