Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj918 Structured version   Visualization version   GIF version

Theorem bnj918 34778
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj918.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj918 𝐺 ∈ V

Proof of Theorem bnj918
StepHypRef Expression
1 bnj918.1 . 2 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 vex 3440 . . 3 𝑓 ∈ V
3 snex 5372 . . 3 {⟨𝑛, 𝐶⟩} ∈ V
42, 3unex 7677 . 2 (𝑓 ∪ {⟨𝑛, 𝐶⟩}) ∈ V
51, 4eqeltri 2827 1 𝐺 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  {csn 4573  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by:  bnj528  34901  bnj929  34948  bnj965  34954  bnj910  34960  bnj985v  34965  bnj985  34966  bnj999  34970  bnj1018g  34975  bnj1018  34976  bnj907  34979
  Copyright terms: Public domain W3C validator