Step | Hyp | Ref
| Expression |
1 | | sadcp1.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | nn0uz 12549 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
4 | | seqp1 13664 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 + 1)) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 + 1)) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
6 | | sadval.c |
. . . . . 6
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
7 | 6 | fveq1i 6757 |
. . . . 5
⊢ (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 +
1)) |
8 | 6 | fveq1i 6757 |
. . . . . 6
⊢ (𝐶‘𝑁) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁) |
9 | 8 | oveq1i 7265 |
. . . . 5
⊢ ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 + 1))) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1))) |
10 | 5, 7, 9 | 3eqtr4g 2804 |
. . . 4
⊢ (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
11 | | peano2nn0 12203 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
12 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0)) |
13 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1)) |
14 | 12, 13 | ifbieq2d 4482 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
15 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1))) = (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))) |
16 | | 0ex 5226 |
. . . . . . . . 9
⊢ ∅
∈ V |
17 | | ovex 7288 |
. . . . . . . . 9
⊢ ((𝑁 + 1) − 1) ∈
V |
18 | 16, 17 | ifex 4506 |
. . . . . . . 8
⊢ if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈
V |
19 | 14, 15, 18 | fvmpt 6857 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
20 | 1, 11, 19 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
21 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
22 | 1, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
23 | 22 | nnne0d 11953 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ≠ 0) |
24 | | ifnefalse 4468 |
. . . . . . 7
⊢ ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) −
1)) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1)) |
26 | 1 | nn0cnd 12225 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
27 | | 1cnd 10901 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
28 | 26, 27 | pncand 11263 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
29 | 20, 25, 28 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁) |
30 | 29 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 + 1))) =
((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁)) |
31 | | sadval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
32 | | sadval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
33 | 31, 32, 6 | sadcf 16088 |
. . . . . 6
⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
34 | 33, 1 | ffvelrnd 6944 |
. . . . 5
⊢ (𝜑 → (𝐶‘𝑁) ∈ 2o) |
35 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) |
36 | 35 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (𝑦 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) |
37 | 35 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (𝑦 ∈ 𝐵 ↔ 𝑁 ∈ 𝐵)) |
38 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶‘𝑁)) |
39 | 38 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶‘𝑁))) |
40 | 36, 37, 39 | cadbi123d 1613 |
. . . . . . 7
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
41 | 40 | ifbid 4479 |
. . . . . 6
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
42 | | biidd 261 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (𝑚 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
43 | | biidd 261 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (𝑚 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
44 | | eleq2w 2822 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥)) |
45 | 42, 43, 44 | cadbi123d 1613 |
. . . . . . . 8
⊢ (𝑐 = 𝑥 → (cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥))) |
46 | 45 | ifbid 4479 |
. . . . . . 7
⊢ (𝑐 = 𝑥 → if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
47 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
48 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
49 | | biidd 261 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥)) |
50 | 47, 48, 49 | cadbi123d 1613 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → (cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥))) |
51 | 50 | ifbid 4479 |
. . . . . . 7
⊢ (𝑚 = 𝑦 → if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
52 | 46, 51 | cbvmpov 7348 |
. . . . . 6
⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑥 ∈ 2o, 𝑦 ∈ ℕ0
↦ if(cadd(𝑦 ∈
𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
53 | | 1oex 8280 |
. . . . . . 7
⊢
1o ∈ V |
54 | 53, 16 | ifex 4506 |
. . . . . 6
⊢
if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ∈
V |
55 | 41, 52, 54 | ovmpoa 7406 |
. . . . 5
⊢ (((𝐶‘𝑁) ∈ 2o ∧ 𝑁 ∈ ℕ0)
→ ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
56 | 34, 1, 55 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
57 | 10, 30, 56 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
58 | 57 | eleq2d 2824 |
. 2
⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅))) |
59 | | noel 4261 |
. . . . 5
⊢ ¬
∅ ∈ ∅ |
60 | | iffalse 4465 |
. . . . . 6
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) =
∅) |
61 | 60 | eleq2d 2824 |
. . . . 5
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → (∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ↔ ∅
∈ ∅)) |
62 | 59, 61 | mtbiri 326 |
. . . 4
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → ¬ ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
63 | 62 | con4i 114 |
. . 3
⊢ (∅
∈ if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) →
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁))) |
64 | | 0lt1o 8296 |
. . . 4
⊢ ∅
∈ 1o |
65 | | iftrue 4462 |
. . . 4
⊢
(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) =
1o) |
66 | 64, 65 | eleqtrrid 2846 |
. . 3
⊢
(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
67 | 63, 66 | impbii 208 |
. 2
⊢ (∅
∈ if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ↔
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁))) |
68 | 58, 67 | bitrdi 286 |
1
⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |