MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcp1 Structured version   Visualization version   GIF version

Theorem sadcp1 16400
Description: The carry sequence (which is a sequence of wffs, encoded as 1o and ) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadcp1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12868 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtrdi 2843 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 13985 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . . . 5 (𝜑 → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 sadval.c . . . . . 6 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6892 . . . . 5 (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6892 . . . . . 6 (𝐶𝑁) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 7421 . . . . 5 ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2797 . . . 4 (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 peano2nn0 12516 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
12 eqeq1 2736 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
13 oveq1 7418 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1412, 13ifbieq2d 4554 . . . . . . . 8 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
15 eqid 2732 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
16 0ex 5307 . . . . . . . . 9 ∅ ∈ V
17 ovex 7444 . . . . . . . . 9 ((𝑁 + 1) − 1) ∈ V
1816, 17ifex 4578 . . . . . . . 8 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
1914, 15, 18fvmpt 6998 . . . . . . 7 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
201, 11, 193syl 18 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
21 nn0p1nn 12515 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
221, 21syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ)
2322nnne0d 12266 . . . . . . 7 (𝜑 → (𝑁 + 1) ≠ 0)
24 ifnefalse 4540 . . . . . . 7 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2523, 24syl 17 . . . . . 6 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
261nn0cnd 12538 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 1cnd 11213 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2826, 27pncand 11576 . . . . . 6 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
2920, 25, 283eqtrd 2776 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3029oveq2d 7427 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁))
31 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
32 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3331, 32, 6sadcf 16398 . . . . . 6 (𝜑𝐶:ℕ0⟶2o)
3433, 1ffvelcdmd 7087 . . . . 5 (𝜑 → (𝐶𝑁) ∈ 2o)
35 simpr 485 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3635eleq1d 2818 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
3735eleq1d 2818 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐵𝑁𝐵))
38 simpl 483 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶𝑁))
3938eleq2d 2819 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶𝑁)))
4036, 37, 39cadbi123d 1611 . . . . . . 7 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
4140ifbid 4551 . . . . . 6 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
42 biidd 261 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐴𝑚𝐴))
43 biidd 261 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐵𝑚𝐵))
44 eleq2w 2817 . . . . . . . . 9 (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥))
4542, 43, 44cadbi123d 1611 . . . . . . . 8 (𝑐 = 𝑥 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥)))
4645ifbid 4551 . . . . . . 7 (𝑐 = 𝑥 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅))
47 eleq1w 2816 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
48 eleq1w 2816 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐵𝑦𝐵))
49 biidd 261 . . . . . . . . 9 (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥))
5047, 48, 49cadbi123d 1611 . . . . . . . 8 (𝑚 = 𝑦 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥)))
5150ifbid 4551 . . . . . . 7 (𝑚 = 𝑦 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
5246, 51cbvmpov 7506 . . . . . 6 (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑥 ∈ 2o, 𝑦 ∈ ℕ0 ↦ if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
53 1oex 8478 . . . . . . 7 1o ∈ V
5453, 16ifex 4578 . . . . . 6 if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ∈ V
5541, 52, 54ovmpoa 7565 . . . . 5 (((𝐶𝑁) ∈ 2o𝑁 ∈ ℕ0) → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5634, 1, 55syl2anc 584 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5710, 30, 563eqtrd 2776 . . 3 (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5857eleq2d 2819 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅)))
59 noel 4330 . . . . 5 ¬ ∅ ∈ ∅
60 iffalse 4537 . . . . . 6 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = ∅)
6160eleq2d 2819 . . . . 5 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ ∅ ∈ ∅))
6259, 61mtbiri 326 . . . 4 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ¬ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6362con4i 114 . . 3 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) → cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
64 0lt1o 8506 . . . 4 ∅ ∈ 1o
65 iftrue 4534 . . . 4 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = 1o)
6664, 65eleqtrrid 2840 . . 3 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6763, 66impbii 208 . 2 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
6858, 67bitrdi 286 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  caddwcad 1607  wcel 2106  wne 2940  wss 3948  c0 4322  ifcif 4528  cmpt 5231  cfv 6543  (class class class)co 7411  cmpo 7413  1oc1o 8461  2oc2o 8462  0cc0 11112  1c1 11113   + caddc 11115  cmin 11448  cn 12216  0cn0 12476  cuz 12826  seqcseq 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-cad 1608  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-seq 13971
This theorem is referenced by:  sadcaddlem  16402  sadadd2lem  16404  saddisjlem  16409
  Copyright terms: Public domain W3C validator