MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcp1 Structured version   Visualization version   GIF version

Theorem sadcp1 16366
Description: The carry sequence (which is a sequence of wffs, encoded as 1o and ) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadcp1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12774 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtrdi 2841 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 13923 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . . . 5 (𝜑 → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 sadval.c . . . . . 6 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6823 . . . . 5 (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6823 . . . . . 6 (𝐶𝑁) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 7356 . . . . 5 ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2791 . . . 4 (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 peano2nn0 12421 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
12 eqeq1 2735 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
13 oveq1 7353 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1412, 13ifbieq2d 4499 . . . . . . . 8 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
15 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
16 0ex 5243 . . . . . . . . 9 ∅ ∈ V
17 ovex 7379 . . . . . . . . 9 ((𝑁 + 1) − 1) ∈ V
1816, 17ifex 4523 . . . . . . . 8 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
1914, 15, 18fvmpt 6929 . . . . . . 7 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
201, 11, 193syl 18 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
21 nn0p1nn 12420 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
221, 21syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ)
2322nnne0d 12175 . . . . . . 7 (𝜑 → (𝑁 + 1) ≠ 0)
24 ifnefalse 4484 . . . . . . 7 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2523, 24syl 17 . . . . . 6 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
261nn0cnd 12444 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 1cnd 11107 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2826, 27pncand 11473 . . . . . 6 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
2920, 25, 283eqtrd 2770 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3029oveq2d 7362 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁))
31 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
32 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3331, 32, 6sadcf 16364 . . . . . 6 (𝜑𝐶:ℕ0⟶2o)
3433, 1ffvelcdmd 7018 . . . . 5 (𝜑 → (𝐶𝑁) ∈ 2o)
35 simpr 484 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3635eleq1d 2816 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
3735eleq1d 2816 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐵𝑁𝐵))
38 simpl 482 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶𝑁))
3938eleq2d 2817 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶𝑁)))
4036, 37, 39cadbi123d 1611 . . . . . . 7 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
4140ifbid 4496 . . . . . 6 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
42 biidd 262 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐴𝑚𝐴))
43 biidd 262 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐵𝑚𝐵))
44 eleq2w 2815 . . . . . . . . 9 (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥))
4542, 43, 44cadbi123d 1611 . . . . . . . 8 (𝑐 = 𝑥 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥)))
4645ifbid 4496 . . . . . . 7 (𝑐 = 𝑥 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅))
47 eleq1w 2814 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
48 eleq1w 2814 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐵𝑦𝐵))
49 biidd 262 . . . . . . . . 9 (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥))
5047, 48, 49cadbi123d 1611 . . . . . . . 8 (𝑚 = 𝑦 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥)))
5150ifbid 4496 . . . . . . 7 (𝑚 = 𝑦 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
5246, 51cbvmpov 7441 . . . . . 6 (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑥 ∈ 2o, 𝑦 ∈ ℕ0 ↦ if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
53 1oex 8395 . . . . . . 7 1o ∈ V
5453, 16ifex 4523 . . . . . 6 if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ∈ V
5541, 52, 54ovmpoa 7501 . . . . 5 (((𝐶𝑁) ∈ 2o𝑁 ∈ ℕ0) → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5634, 1, 55syl2anc 584 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5710, 30, 563eqtrd 2770 . . 3 (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5857eleq2d 2817 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅)))
59 noel 4285 . . . . 5 ¬ ∅ ∈ ∅
60 iffalse 4481 . . . . . 6 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = ∅)
6160eleq2d 2817 . . . . 5 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ ∅ ∈ ∅))
6259, 61mtbiri 327 . . . 4 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ¬ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6362con4i 114 . . 3 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) → cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
64 0lt1o 8419 . . . 4 ∅ ∈ 1o
65 iftrue 4478 . . . 4 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = 1o)
6664, 65eleqtrrid 2838 . . 3 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6763, 66impbii 209 . 2 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
6858, 67bitrdi 287 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  caddwcad 1607  wcel 2111  wne 2928  wss 3897  c0 4280  ifcif 4472  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  0cc0 11006  1c1 11007   + caddc 11009  cmin 11344  cn 12125  0cn0 12381  cuz 12732  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909
This theorem is referenced by:  sadcaddlem  16368  sadadd2lem  16370  saddisjlem  16375
  Copyright terms: Public domain W3C validator