| Step | Hyp | Ref
| Expression |
| 1 | | sadcp1.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | nn0uz 12899 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 3 | 1, 2 | eleqtrdi 2845 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 4 | | seqp1 14039 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 + 1)) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 + 1)) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
| 6 | | sadval.c |
. . . . . 6
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
| 7 | 6 | fveq1i 6882 |
. . . . 5
⊢ (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘(𝑁 +
1)) |
| 8 | 6 | fveq1i 6882 |
. . . . . 6
⊢ (𝐶‘𝑁) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁) |
| 9 | 8 | oveq1i 7420 |
. . . . 5
⊢ ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 + 1))) =
((seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1))) |
| 10 | 5, 7, 9 | 3eqtr4g 2796 |
. . . 4
⊢ (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 +
1)))) |
| 11 | | peano2nn0 12546 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 12 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0)) |
| 13 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1)) |
| 14 | 12, 13 | ifbieq2d 4532 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
| 15 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1))) = (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))) |
| 16 | | 0ex 5282 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 17 | | ovex 7443 |
. . . . . . . . 9
⊢ ((𝑁 + 1) − 1) ∈
V |
| 18 | 16, 17 | ifex 4556 |
. . . . . . . 8
⊢ if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈
V |
| 19 | 14, 15, 18 | fvmpt 6991 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
| 20 | 1, 11, 19 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
| 21 | | nn0p1nn 12545 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 22 | 1, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 23 | 22 | nnne0d 12295 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ≠ 0) |
| 24 | | ifnefalse 4517 |
. . . . . . 7
⊢ ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) −
1)) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1)) |
| 26 | 1 | nn0cnd 12569 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | | 1cnd 11235 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
| 28 | 26, 27 | pncand 11600 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 29 | 20, 25, 28 | 3eqtrd 2775 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁) |
| 30 | 29 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))‘(𝑁 + 1))) =
((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁)) |
| 31 | | sadval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
| 32 | | sadval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
| 33 | 31, 32, 6 | sadcf 16477 |
. . . . . 6
⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
| 34 | 33, 1 | ffvelcdmd 7080 |
. . . . 5
⊢ (𝜑 → (𝐶‘𝑁) ∈ 2o) |
| 35 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) |
| 36 | 35 | eleq1d 2820 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (𝑦 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) |
| 37 | 35 | eleq1d 2820 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (𝑦 ∈ 𝐵 ↔ 𝑁 ∈ 𝐵)) |
| 38 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶‘𝑁)) |
| 39 | 38 | eleq2d 2821 |
. . . . . . . 8
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶‘𝑁))) |
| 40 | 36, 37, 39 | cadbi123d 1610 |
. . . . . . 7
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
| 41 | 40 | ifbid 4529 |
. . . . . 6
⊢ ((𝑥 = (𝐶‘𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 42 | | biidd 262 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (𝑚 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
| 43 | | biidd 262 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (𝑚 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
| 44 | | eleq2w 2819 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥)) |
| 45 | 42, 43, 44 | cadbi123d 1610 |
. . . . . . . 8
⊢ (𝑐 = 𝑥 → (cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥))) |
| 46 | 45 | ifbid 4529 |
. . . . . . 7
⊢ (𝑐 = 𝑥 → if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
| 47 | | eleq1w 2818 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 48 | | eleq1w 2818 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 49 | | biidd 262 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥)) |
| 50 | 47, 48, 49 | cadbi123d 1610 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → (cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥))) |
| 51 | 50 | ifbid 4529 |
. . . . . . 7
⊢ (𝑚 = 𝑦 → if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑦 ∈ 𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
| 52 | 46, 51 | cbvmpov 7507 |
. . . . . 6
⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑥 ∈ 2o, 𝑦 ∈ ℕ0
↦ if(cadd(𝑦 ∈
𝐴, 𝑦 ∈ 𝐵, ∅ ∈ 𝑥), 1o, ∅)) |
| 53 | | 1oex 8495 |
. . . . . . 7
⊢
1o ∈ V |
| 54 | 53, 16 | ifex 4556 |
. . . . . 6
⊢
if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ∈
V |
| 55 | 41, 52, 54 | ovmpoa 7567 |
. . . . 5
⊢ (((𝐶‘𝑁) ∈ 2o ∧ 𝑁 ∈ ℕ0)
→ ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 56 | 34, 1, 55 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐶‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 57 | 10, 30, 56 | 3eqtrd 2775 |
. . 3
⊢ (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 58 | 57 | eleq2d 2821 |
. 2
⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅))) |
| 59 | | noel 4318 |
. . . . 5
⊢ ¬
∅ ∈ ∅ |
| 60 | | iffalse 4514 |
. . . . . 6
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) =
∅) |
| 61 | 60 | eleq2d 2821 |
. . . . 5
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → (∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ↔ ∅
∈ ∅)) |
| 62 | 59, 61 | mtbiri 327 |
. . . 4
⊢ (¬
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → ¬ ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 63 | 62 | con4i 114 |
. . 3
⊢ (∅
∈ if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) →
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁))) |
| 64 | | 0lt1o 8521 |
. . . 4
⊢ ∅
∈ 1o |
| 65 | | iftrue 4511 |
. . . 4
⊢
(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) =
1o) |
| 66 | 64, 65 | eleqtrrid 2842 |
. . 3
⊢
(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)) → ∅ ∈ if(cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o,
∅)) |
| 67 | 63, 66 | impbii 209 |
. 2
⊢ (∅
∈ if(cadd(𝑁 ∈
𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)), 1o, ∅) ↔
cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁))) |
| 68 | 58, 67 | bitrdi 287 |
1
⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |