MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcp1 Structured version   Visualization version   GIF version

Theorem sadcp1 16455
Description: The carry sequence (which is a sequence of wffs, encoded as 1o and ) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadcp1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12916 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtrdi 2836 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 14036 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . . . 5 (𝜑 → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 sadval.c . . . . . 6 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6902 . . . . 5 (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6902 . . . . . 6 (𝐶𝑁) = (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 7434 . . . . 5 ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2791 . . . 4 (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 peano2nn0 12564 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
12 eqeq1 2730 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
13 oveq1 7431 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1412, 13ifbieq2d 4559 . . . . . . . 8 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
15 eqid 2726 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
16 0ex 5312 . . . . . . . . 9 ∅ ∈ V
17 ovex 7457 . . . . . . . . 9 ((𝑁 + 1) − 1) ∈ V
1816, 17ifex 4583 . . . . . . . 8 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
1914, 15, 18fvmpt 7009 . . . . . . 7 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
201, 11, 193syl 18 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
21 nn0p1nn 12563 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
221, 21syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ)
2322nnne0d 12314 . . . . . . 7 (𝜑 → (𝑁 + 1) ≠ 0)
24 ifnefalse 4545 . . . . . . 7 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2523, 24syl 17 . . . . . 6 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
261nn0cnd 12586 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 1cnd 11259 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2826, 27pncand 11622 . . . . . 6 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
2920, 25, 283eqtrd 2770 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3029oveq2d 7440 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁))
31 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
32 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3331, 32, 6sadcf 16453 . . . . . 6 (𝜑𝐶:ℕ0⟶2o)
3433, 1ffvelcdmd 7099 . . . . 5 (𝜑 → (𝐶𝑁) ∈ 2o)
35 simpr 483 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3635eleq1d 2811 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
3735eleq1d 2811 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐵𝑁𝐵))
38 simpl 481 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶𝑁))
3938eleq2d 2812 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶𝑁)))
4036, 37, 39cadbi123d 1604 . . . . . . 7 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
4140ifbid 4556 . . . . . 6 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
42 biidd 261 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐴𝑚𝐴))
43 biidd 261 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐵𝑚𝐵))
44 eleq2w 2810 . . . . . . . . 9 (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥))
4542, 43, 44cadbi123d 1604 . . . . . . . 8 (𝑐 = 𝑥 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥)))
4645ifbid 4556 . . . . . . 7 (𝑐 = 𝑥 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅))
47 eleq1w 2809 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
48 eleq1w 2809 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐵𝑦𝐵))
49 biidd 261 . . . . . . . . 9 (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥))
5047, 48, 49cadbi123d 1604 . . . . . . . 8 (𝑚 = 𝑦 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥)))
5150ifbid 4556 . . . . . . 7 (𝑚 = 𝑦 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1o, ∅) = if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
5246, 51cbvmpov 7520 . . . . . 6 (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑥 ∈ 2o, 𝑦 ∈ ℕ0 ↦ if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1o, ∅))
53 1oex 8506 . . . . . . 7 1o ∈ V
5453, 16ifex 4583 . . . . . 6 if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ∈ V
5541, 52, 54ovmpoa 7581 . . . . 5 (((𝐶𝑁) ∈ 2o𝑁 ∈ ℕ0) → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5634, 1, 55syl2anc 582 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5710, 30, 563eqtrd 2770 . . 3 (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
5857eleq2d 2812 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅)))
59 noel 4333 . . . . 5 ¬ ∅ ∈ ∅
60 iffalse 4542 . . . . . 6 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = ∅)
6160eleq2d 2812 . . . . 5 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ ∅ ∈ ∅))
6259, 61mtbiri 326 . . . 4 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ¬ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6362con4i 114 . . 3 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) → cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
64 0lt1o 8534 . . . 4 ∅ ∈ 1o
65 iftrue 4539 . . . 4 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) = 1o)
6664, 65eleqtrrid 2833 . . 3 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅))
6763, 66impbii 208 . 2 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1o, ∅) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
6858, 67bitrdi 286 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  caddwcad 1600  wcel 2099  wne 2930  wss 3947  c0 4325  ifcif 4533  cmpt 5236  cfv 6554  (class class class)co 7424  cmpo 7426  1oc1o 8489  2oc2o 8490  0cc0 11158  1c1 11159   + caddc 11161  cmin 11494  cn 12264  0cn0 12524  cuz 12874  seqcseq 14021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-cad 1601  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-seq 14022
This theorem is referenced by:  sadcaddlem  16457  sadadd2lem  16459  saddisjlem  16464
  Copyright terms: Public domain W3C validator