MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval2vv Structured version   Visualization version   GIF version

Theorem cbval2vv 2413
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbval2vw 2044 if possible. (Contributed by NM, 4-Feb-2005.) Remove dependency on ax-10 2139. (Revised by Wolf Lammen, 18-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbval2vv.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbval2vv (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑦,𝜓   𝑥,𝑤   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbval2vv
StepHypRef Expression
1 cbval2vv.1 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
21cbvaldva 2409 . 2 (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓))
32cbvalv 2400 1 (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator