MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaldva Structured version   Visualization version   GIF version

Theorem cbvaldva 2409
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvaldvaw 2041 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvaldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvaldva (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvaldva
StepHypRef Expression
1 nfv 1917 . 2 𝑦𝜑
2 nfvd 1918 . 2 (𝜑 → Ⅎ𝑦𝜓)
3 cbvaldva.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
43ex 413 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
51, 2, 4cbvald 2407 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  cbval2vv  2413
  Copyright terms: Public domain W3C validator