MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvral2vw Structured version   Visualization version   GIF version

Theorem cbvral2vw 3214
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3334 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvral2vw.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2vw.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2vw (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑤   𝑥,𝐴,𝑧   𝑥,𝑦,𝐵,𝑧   𝑤,𝐵   𝜑,𝑧   𝜓,𝑦   𝜒,𝑥   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2vw
StepHypRef Expression
1 cbvral2vw.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21ralbidv 3155 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
32cbvralvw 3210 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
4 cbvral2vw.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvralvw 3210 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
65ralbii 3078 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 275 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-clel 2806  df-ral 3048
This theorem is referenced by:  cbvral3vw  3216  cbvral6vw  3218  fununi  6556  fiint  9211  nqereu  10820  mgmhmpropd  18606  mhmpropd  18700  efgred  19660  mplcoe5  21975  mdetunilem9  22535  fbun  23755  fbunfip  23784  caucfil  25210  pmltpc  25378  negsprop  27977  iscgrglt  28492  axcontlem10  28951  htth  30898  cdj3lem3b  32420  cdj3i  32421  dfmgc2  32977  isros  34181  rossros  34193  fipjust  43668  isotone1  44151  isotone2  44152  ntrclsiso  44170  ntrclskb  44172  ntrclsk3  44173  ntrclsk13  44174  limsuppnfd  45810  pimincfltioo  46826  incsmf  46850  decsmf  46875  catprslem  49121  isthincd2lem1  49536  isthincd2lem2  49546
  Copyright terms: Public domain W3C validator