| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvral2vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3331 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvral2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvral2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral2vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3152 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | cbvralvw 3207 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
| 4 | cbvral2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | cbvralvw 3207 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
| 6 | 5 | ralbii 3075 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: cbvral3vw 3213 cbvral6vw 3215 fununi 6557 fiint 9216 fiintOLD 9217 nqereu 10823 mgmhmpropd 18572 mhmpropd 18666 efgred 19627 mplcoe5 21945 mdetunilem9 22505 fbun 23725 fbunfip 23754 caucfil 25181 pmltpc 25349 negsprop 27946 iscgrglt 28459 axcontlem10 28918 htth 30862 cdj3lem3b 32384 cdj3i 32385 dfmgc2 32939 isros 34141 rossros 34153 fipjust 43548 isotone1 44031 isotone2 44032 ntrclsiso 44050 ntrclskb 44052 ntrclsk3 44053 ntrclsk13 44054 limsuppnfd 45693 pimincfltioo 46709 incsmf 46733 decsmf 46758 catprslem 49005 isthincd2lem1 49420 isthincd2lem2 49430 |
| Copyright terms: Public domain | W3C validator |