| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvral2vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3334 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvral2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvral2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral2vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3155 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | cbvralvw 3210 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
| 4 | cbvral2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | cbvralvw 3210 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
| 6 | 5 | ralbii 3078 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: cbvral3vw 3216 cbvral6vw 3218 fununi 6556 fiint 9211 nqereu 10820 mgmhmpropd 18606 mhmpropd 18700 efgred 19660 mplcoe5 21975 mdetunilem9 22535 fbun 23755 fbunfip 23784 caucfil 25210 pmltpc 25378 negsprop 27977 iscgrglt 28492 axcontlem10 28951 htth 30898 cdj3lem3b 32420 cdj3i 32421 dfmgc2 32977 isros 34181 rossros 34193 fipjust 43668 isotone1 44151 isotone2 44152 ntrclsiso 44170 ntrclskb 44172 ntrclsk3 44173 ntrclsk13 44174 limsuppnfd 45810 pimincfltioo 46826 incsmf 46850 decsmf 46875 catprslem 49121 isthincd2lem1 49536 isthincd2lem2 49546 |
| Copyright terms: Public domain | W3C validator |