| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvral2vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3347 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvral2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvral2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral2vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3163 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | cbvralvw 3220 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
| 4 | cbvral2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | cbvralvw 3220 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
| 6 | 5 | ralbii 3082 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 df-ral 3052 |
| This theorem is referenced by: cbvral3vw 3226 cbvral6vw 3228 fununi 6610 fiint 9336 fiintOLD 9337 nqereu 10941 mgmhmpropd 18674 mhmpropd 18768 efgred 19727 mplcoe5 21996 mdetunilem9 22556 fbun 23776 fbunfip 23805 caucfil 25233 pmltpc 25401 negsprop 27984 iscgrglt 28439 axcontlem10 28898 htth 30845 cdj3lem3b 32367 cdj3i 32368 dfmgc2 32922 isros 34145 rossros 34157 fipjust 43536 isotone1 44019 isotone2 44020 ntrclsiso 44038 ntrclskb 44040 ntrclsk3 44041 ntrclsk13 44042 limsuppnfd 45679 pimincfltioo 46695 incsmf 46719 decsmf 46744 catprslem 48933 isthincd2lem1 49259 isthincd2lem2 49269 |
| Copyright terms: Public domain | W3C validator |