![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvral2vw | Structured version Visualization version GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3376 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvral2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
cbvral2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral2vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3184 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | cbvralvw 3243 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
4 | cbvral2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
5 | 4 | cbvralvw 3243 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
6 | 5 | ralbii 3099 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
7 | 3, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-ral 3068 |
This theorem is referenced by: cbvral3vw 3249 cbvral6vw 3251 fununi 6653 fiint 9394 fiintOLD 9395 nqereu 10998 mgmhmpropd 18736 mhmpropd 18827 efgred 19790 mplcoe5 22081 mdetunilem9 22647 fbun 23869 fbunfip 23898 caucfil 25336 pmltpc 25504 negsprop 28085 iscgrglt 28540 axcontlem10 29006 htth 30950 cdj3lem3b 32472 cdj3i 32473 dfmgc2 32969 isros 34132 rossros 34144 fipjust 43527 isotone1 44010 isotone2 44011 ntrclsiso 44029 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 limsuppnfd 45623 pimincfltioo 46639 incsmf 46663 decsmf 46688 catprslem 48677 isthincd2lem1 48694 isthincd2lem2 48703 |
Copyright terms: Public domain | W3C validator |