Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvral2vw | Structured version Visualization version GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3400 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 10-Aug-2004.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvral2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
cbvral2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral2vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3113 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | cbvralvw 3384 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
4 | cbvral2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
5 | 4 | cbvralvw 3384 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) |
6 | 5 | ralbii 3093 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2817 df-ral 3070 |
This theorem is referenced by: cbvral3vw 3399 fununi 6516 fiint 9100 nqereu 10694 mhmpropd 18445 efgred 19363 mplcoe5 21250 mdetunilem9 21778 fbun 23000 fbunfip 23029 caucfil 24456 pmltpc 24623 iscgrglt 26884 axcontlem10 27350 htth 29289 cdj3lem3b 30811 cdj3i 30812 dfmgc2 31283 isros 32145 rossros 32157 fipjust 41179 isotone1 41665 isotone2 41666 ntrclsiso 41684 ntrclskb 41686 ntrclsk3 41687 ntrclsk13 41688 limsuppnfd 43250 pimincfltioo 44263 incsmf 44287 decsmf 44312 mgmhmpropd 45350 catprslem 46302 isthincd2lem1 46319 isthincd2lem2 46328 |
Copyright terms: Public domain | W3C validator |