MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvral2vw Structured version   Visualization version   GIF version

Theorem cbvral2vw 3219
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3342 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvral2vw.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2vw.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2vw (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑤   𝑥,𝐴,𝑧   𝑥,𝑦,𝐵,𝑧   𝑤,𝐵   𝜑,𝑧   𝜓,𝑦   𝜒,𝑥   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2vw
StepHypRef Expression
1 cbvral2vw.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21ralbidv 3156 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
32cbvralvw 3215 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
4 cbvral2vw.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvralvw 3215 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
65ralbii 3075 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 275 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803  df-ral 3045
This theorem is referenced by:  cbvral3vw  3221  cbvral6vw  3223  fununi  6591  fiint  9277  fiintOLD  9278  nqereu  10882  mgmhmpropd  18625  mhmpropd  18719  efgred  19678  mplcoe5  21947  mdetunilem9  22507  fbun  23727  fbunfip  23756  caucfil  25183  pmltpc  25351  negsprop  27941  iscgrglt  28441  axcontlem10  28900  htth  30847  cdj3lem3b  32369  cdj3i  32370  dfmgc2  32922  isros  34158  rossros  34170  fipjust  43554  isotone1  44037  isotone2  44038  ntrclsiso  44056  ntrclskb  44058  ntrclsk3  44059  ntrclsk13  44060  limsuppnfd  45700  pimincfltioo  46716  incsmf  46740  decsmf  46765  catprslem  48999  isthincd2lem1  49414  isthincd2lem2  49424
  Copyright terms: Public domain W3C validator