| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccase2 | Structured version Visualization version GIF version | ||
| Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| ccase2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| ccase2.2 | ⊢ (𝜒 → 𝜏) |
| ccase2.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| ccase2 | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
| 2 | ccase2.2 | . . 3 ⊢ (𝜒 → 𝜏) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
| 4 | ccase2.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| 6 | 4 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| 7 | 1, 3, 5, 6 | ccase 1038 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: opthhausdorff 5522 fctop 23011 cctop 23013 |
| Copyright terms: Public domain | W3C validator |