Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccase2 | Structured version Visualization version GIF version |
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
ccase2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
ccase2.2 | ⊢ (𝜒 → 𝜏) |
ccase2.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
ccase2 | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
2 | ccase2.2 | . . 3 ⊢ (𝜒 → 𝜏) | |
3 | 2 | adantr 484 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
4 | ccase2.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
5 | 4 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
6 | 4 | adantl 485 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
7 | 1, 3, 5, 6 | ccase 1038 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 |
This theorem is referenced by: opthhausdorff 5400 fctop 21901 cctop 21903 |
Copyright terms: Public domain | W3C validator |