Step | Hyp | Ref
| Expression |
1 | | difeq2 4051 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ ∪ 𝑦)) |
2 | 1 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ ∪ 𝑦) ∈ Fin)) |
3 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → (𝑥 = ∅ ↔ ∪ 𝑦 =
∅)) |
4 | 2, 3 | orbi12d 916 |
. . . . . 6
⊢ (𝑥 = ∪
𝑦 → (((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ ∪ 𝑦) ∈ Fin ∨ ∪ 𝑦 =
∅))) |
5 | | uniss 4847 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
6 | | ssrab2 4013 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 |
7 | | sspwuni 5029 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴) |
8 | 6, 7 | mpbi 229 |
. . . . . . . 8
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴 |
9 | 5, 8 | sstrdi 3933 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ 𝐴) |
10 | | vuniex 7592 |
. . . . . . . 8
⊢ ∪ 𝑦
∈ V |
11 | 10 | elpw 4537 |
. . . . . . 7
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
12 | 9, 11 | sylibr 233 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ 𝒫 𝐴) |
13 | | uni0c 4868 |
. . . . . . . . . . 11
⊢ (∪ 𝑦 =
∅ ↔ ∀𝑧
∈ 𝑦 𝑧 = ∅) |
14 | 13 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
∪ 𝑦 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
15 | | rexnal 3169 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
16 | 14, 15 | bitr4i 277 |
. . . . . . . . 9
⊢ (¬
∪ 𝑦 = ∅ ↔ ∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅) |
17 | | ssel2 3916 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
18 | | difeq2 4051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑧)) |
19 | 18 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑧) ∈ Fin)) |
20 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅)) |
21 | 19, 20 | orbi12d 916 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) |
22 | 21 | elrab 3624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) |
23 | 17, 22 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) |
24 | 23 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅)) |
25 | 24 | ord 861 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ (𝐴 ∖ 𝑧) ∈ Fin → 𝑧 = ∅)) |
26 | 25 | con1d 145 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 = ∅ → (𝐴 ∖ 𝑧) ∈ Fin)) |
27 | 26 | imp 407 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ 𝑧) ∈ Fin) |
28 | | elssuni 4871 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
29 | 28 | sscond 4076 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 → (𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧)) |
30 | | ssfi 8956 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧)) → (𝐴 ∖ ∪ 𝑦) ∈ Fin) |
31 | 29, 30 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ 𝑧 ∈ 𝑦) → (𝐴 ∖ ∪ 𝑦) ∈ Fin) |
32 | 31 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑦 → ((𝐴 ∖ 𝑧) ∈ Fin → (𝐴 ∖ ∪ 𝑦) ∈ Fin)) |
33 | 32 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → ((𝐴 ∖ 𝑧) ∈ Fin → (𝐴 ∖ ∪ 𝑦) ∈ Fin)) |
34 | 27, 33 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ ∪ 𝑦) ∈ Fin) |
35 | 34 | rexlimdva2 3216 |
. . . . . . . . 9
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → (𝐴 ∖ ∪ 𝑦) ∈ Fin)) |
36 | 16, 35 | syl5bi 241 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ ∪ 𝑦 =
∅ → (𝐴 ∖
∪ 𝑦) ∈ Fin)) |
37 | 36 | con1d 145 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ (𝐴 ∖ ∪ 𝑦) ∈ Fin → ∪ 𝑦 =
∅)) |
38 | 37 | orrd 860 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ((𝐴 ∖ ∪ 𝑦) ∈ Fin ∨ ∪ 𝑦 =
∅)) |
39 | 4, 12, 38 | elrabd 3626 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
40 | 39 | ax-gen 1798 |
. . . 4
⊢
∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
41 | | ssinss1 4171 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝐴 → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
42 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
43 | 42 | elpw 4537 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
44 | 42 | inex1 5241 |
. . . . . . . . . 10
⊢ (𝑦 ∩ 𝑧) ∈ V |
45 | 44 | elpw 4537 |
. . . . . . . . 9
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
46 | 41, 43, 45 | 3imtr4i 292 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
47 | 46 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
48 | | difindi 4215 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ (𝑦 ∩ 𝑧)) = ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) |
49 | | unfi 8955 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ 𝑦) ∈ Fin ∧ (𝐴 ∖ 𝑧) ∈ Fin) → ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) ∈ Fin) |
50 | 48, 49 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ 𝑦) ∈ Fin ∧ (𝐴 ∖ 𝑧) ∈ Fin) → (𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin) |
51 | 50 | orcd 870 |
. . . . . . . . 9
⊢ (((𝐴 ∖ 𝑦) ∈ Fin ∧ (𝐴 ∖ 𝑧) ∈ Fin) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅)) |
52 | | ineq1 4139 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = (∅ ∩ 𝑧)) |
53 | | 0in 4327 |
. . . . . . . . . . 11
⊢ (∅
∩ 𝑧) =
∅ |
54 | 52, 53 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
55 | 54 | olcd 871 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅)) |
56 | | ineq2 4140 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = (𝑦 ∩ ∅)) |
57 | | in0 4325 |
. . . . . . . . . . 11
⊢ (𝑦 ∩ ∅) =
∅ |
58 | 56, 57 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
59 | 58 | olcd 871 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅)) |
60 | 51, 55, 59 | ccase2 1037 |
. . . . . . . 8
⊢ ((((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅) ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅)) |
61 | 60 | ad2ant2l 743 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅)) |
62 | 47, 61 | jca 512 |
. . . . . 6
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅))) |
63 | | difeq2 4051 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
64 | 63 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
65 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
66 | 64, 65 | orbi12d 916 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅))) |
67 | 66 | elrab 3624 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅))) |
68 | 67, 22 | anbi12i 627 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ∈ Fin ∨ 𝑧 = ∅)))) |
69 | | difeq2 4051 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑦 ∩ 𝑧))) |
70 | 69 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin)) |
71 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = ∅ ↔ (𝑦 ∩ 𝑧) = ∅)) |
72 | 70, 71 | orbi12d 916 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅))) |
73 | 72 | elrab 3624 |
. . . . . 6
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ∈ Fin ∨ (𝑦 ∩ 𝑧) = ∅))) |
74 | 62, 68, 73 | 3imtr4i 292 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
75 | 74 | rgen2 3120 |
. . . 4
⊢
∀𝑦 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} |
76 | 40, 75 | pm3.2i 471 |
. . 3
⊢
(∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
77 | | pwexg 5301 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
78 | | rabexg 5255 |
. . . 4
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V) |
79 | | istopg 22044 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}))) |
80 | 77, 78, 79 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}))) |
81 | 76, 80 | mpbiri 257 |
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top) |
82 | | difeq2 4051 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐴)) |
83 | | difid 4304 |
. . . . . . . 8
⊢ (𝐴 ∖ 𝐴) = ∅ |
84 | 82, 83 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = ∅) |
85 | 84 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ ∅ ∈
Fin)) |
86 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) |
87 | 85, 86 | orbi12d 916 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ (∅ ∈ Fin ∨
𝐴 =
∅))) |
88 | | pwidg 4555 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
89 | | 0fin 8954 |
. . . . . . 7
⊢ ∅
∈ Fin |
90 | 89 | orci 862 |
. . . . . 6
⊢ (∅
∈ Fin ∨ 𝐴 =
∅) |
91 | 90 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∅ ∈ Fin ∨ 𝐴 = ∅)) |
92 | 87, 88, 91 | elrabd 3626 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
93 | | elssuni 4871 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
94 | 92, 93 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
95 | 8 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴) |
96 | 94, 95 | eqssd 3938 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)}) |
97 | | istopon 22061 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = ∪
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)})) |
98 | 81, 96, 97 | sylanbrc 583 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) |