Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Structured version   Visualization version   GIF version

Theorem fctop 21609
 Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4044 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
21eleq1d 2874 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴 𝑦) ∈ Fin))
3 eqeq1 2802 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
42, 3orbi12d 916 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ∈ Fin ∨ 𝑦 = ∅)))
5 uniss 4808 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
6 ssrab2 4007 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
7 sspwuni 4985 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴)
86, 7mpbi 233 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴
95, 8sstrdi 3927 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦𝐴)
10 vuniex 7445 . . . . . . . 8 𝑦 ∈ V
1110elpw 4501 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
129, 11sylibr 237 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
13 uni0c 4827 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
1413notbii 323 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
15 rexnal 3201 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1614, 15bitr4i 281 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
17 ssel2 3910 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
18 difeq2 4044 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1918eleq1d 2874 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑧) ∈ Fin))
20 eqeq1 2802 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
2119, 20orbi12d 916 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
2221elrab 3628 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
2317, 22sylib 221 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
2423simprd 499 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))
2524ord 861 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ∈ Fin → 𝑧 = ∅))
2625con1d 147 . . . . . . . . . . . 12 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ∈ Fin))
2726imp 410 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ∈ Fin)
28 elssuni 4830 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧 𝑦)
2928sscond 4069 . . . . . . . . . . . . . 14 (𝑧𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
30 ssfi 8722 . . . . . . . . . . . . . 14 (((𝐴𝑧) ∈ Fin ∧ (𝐴 𝑦) ⊆ (𝐴𝑧)) → (𝐴 𝑦) ∈ Fin)
3129, 30sylan2 595 . . . . . . . . . . . . 13 (((𝐴𝑧) ∈ Fin ∧ 𝑧𝑦) → (𝐴 𝑦) ∈ Fin)
3231expcom 417 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝐴𝑧) ∈ Fin → (𝐴 𝑦) ∈ Fin))
3332ad2antlr 726 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → ((𝐴𝑧) ∈ Fin → (𝐴 𝑦) ∈ Fin))
3427, 33mpd 15 . . . . . . . . . 10 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ∈ Fin)
3534rexlimdva2 3246 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ∈ Fin))
3616, 35syl5bi 245 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ∈ Fin))
3736con1d 147 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ∈ Fin → 𝑦 = ∅))
3837orrd 860 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ∈ Fin ∨ 𝑦 = ∅))
394, 12, 38elrabd 3630 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
4039ax-gen 1797 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
41 ssinss1 4164 . . . . . . . . 9 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
42 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
4342elpw 4501 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
4442inex1 5185 . . . . . . . . . 10 (𝑦𝑧) ∈ V
4544elpw 4501 . . . . . . . . 9 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
4641, 43, 453imtr4i 295 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
4746ad2antrr 725 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
48 difindi 4208 . . . . . . . . . . 11 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
49 unfi 8769 . . . . . . . . . . 11 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → ((𝐴𝑦) ∪ (𝐴𝑧)) ∈ Fin)
5048, 49eqeltrid 2894 . . . . . . . . . 10 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → (𝐴 ∖ (𝑦𝑧)) ∈ Fin)
5150orcd 870 . . . . . . . . 9 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
52 ineq1 4131 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
53 0in 4301 . . . . . . . . . . 11 (∅ ∩ 𝑧) = ∅
5452, 53eqtrdi 2849 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦𝑧) = ∅)
5554olcd 871 . . . . . . . . 9 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
56 ineq2 4133 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
57 in0 4299 . . . . . . . . . . 11 (𝑦 ∩ ∅) = ∅
5856, 57eqtrdi 2849 . . . . . . . . . 10 (𝑧 = ∅ → (𝑦𝑧) = ∅)
5958olcd 871 . . . . . . . . 9 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6051, 55, 59ccase2 1035 . . . . . . . 8 ((((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6160ad2ant2l 745 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6247, 61jca 515 . . . . . 6 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
63 difeq2 4044 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
6463eleq1d 2874 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
65 eqeq1 2802 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
6664, 65orbi12d 916 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)))
6766elrab 3628 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)))
6867, 22anbi12i 629 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))))
69 difeq2 4044 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7069eleq1d 2874 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝑦𝑧)) ∈ Fin))
71 eqeq1 2802 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7270, 71orbi12d 916 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
7372elrab 3628 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
7462, 68, 733imtr4i 295 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
7574rgen2 3168 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}
7640, 75pm3.2i 474 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
77 pwexg 5244 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
78 rabexg 5198 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V)
79 istopg 21500 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})))
8077, 78, 793syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})))
8176, 80mpbiri 261 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top)
82 difeq2 4044 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
83 difid 4284 . . . . . . . 8 (𝐴𝐴) = ∅
8482, 83eqtrdi 2849 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
8584eleq1d 2874 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
86 eqeq1 2802 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
8785, 86orbi12d 916 . . . . 5 (𝑥 = 𝐴 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ (∅ ∈ Fin ∨ 𝐴 = ∅)))
88 pwidg 4519 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
89 0fin 8730 . . . . . . 7 ∅ ∈ Fin
9089orci 862 . . . . . 6 (∅ ∈ Fin ∨ 𝐴 = ∅)
9190a1i 11 . . . . 5 (𝐴𝑉 → (∅ ∈ Fin ∨ 𝐴 = ∅))
9287, 88, 91elrabd 3630 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
93 elssuni 4830 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
9492, 93syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
958a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴)
9694, 95eqssd 3932 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
97 istopon 21517 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}))
9881, 96, 97sylanbrc 586 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844  ∀wal 1536   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  ∪ cuni 4800  ‘cfv 6324  Fincfn 8492  Topctop 21498  TopOnctopon 21515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-top 21499  df-topon 21516 This theorem is referenced by:  fctop2  21610
 Copyright terms: Public domain W3C validator