MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthhausdorff Structured version   Visualization version   GIF version

Theorem opthhausdorff 5479
Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "GrundzΓΌge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: ⟨𝐴, 𝐡⟩H = {{𝐴, 𝑂}, {𝐡, 𝑇}}. Hausdorff used 1 and 2 instead of 𝑂 and 𝑇, but actually, any two different fixed sets will do (e.g., 𝑂 = βˆ… and 𝑇 = {βˆ…}, see 0nep0 5318). Furthermore, Hausdorff demanded that 𝑂 and 𝑇 are both different from 𝐴 as well as 𝐡, which is actually not necessary in full extent (𝐴 β‰  𝑇 is not required). This definition is meaningful only for classes 𝐴 and 𝐡 that exist as sets (i.e., are not proper classes): If 𝐴 and 𝐢 were different proper classes (𝐴 β‰  𝐢), then {{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇} ↔ {{𝑂}, {𝐡, 𝑇}} = {{𝑂}, {𝐷, 𝑇} is true if 𝐡 = 𝐷, but (𝐴 = 𝐢 ∧ 𝐡 = 𝐷) would be false. See df-op 4598 for other ordered pair definitions. (Contributed by AV, 14-Jun-2022.)
Hypotheses
Ref Expression
opthhausdorff.a 𝐴 ∈ V
opthhausdorff.b 𝐡 ∈ V
opthhausdorff.o 𝐴 β‰  𝑂
opthhausdorff.n 𝐡 β‰  𝑂
opthhausdorff.t 𝐡 β‰  𝑇
opthhausdorff.1 𝑂 ∈ V
opthhausdorff.2 𝑇 ∈ V
opthhausdorff.3 𝑂 β‰  𝑇
Assertion
Ref Expression
opthhausdorff ({{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))

Proof of Theorem opthhausdorff
StepHypRef Expression
1 prex 5394 . . . 4 {𝐴, 𝑂} ∈ V
2 prex 5394 . . . 4 {𝐡, 𝑇} ∈ V
3 opthhausdorff.a . . . . . . 7 𝐴 ∈ V
4 opthhausdorff.1 . . . . . . 7 𝑂 ∈ V
53, 4pm3.2i 472 . . . . . 6 (𝐴 ∈ V ∧ 𝑂 ∈ V)
6 opthhausdorff.b . . . . . . 7 𝐡 ∈ V
7 opthhausdorff.2 . . . . . . 7 𝑇 ∈ V
86, 7pm3.2i 472 . . . . . 6 (𝐡 ∈ V ∧ 𝑇 ∈ V)
95, 8pm3.2i 472 . . . . 5 ((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐡 ∈ V ∧ 𝑇 ∈ V))
10 opthhausdorff.n . . . . . . . 8 𝐡 β‰  𝑂
1110necomi 2999 . . . . . . 7 𝑂 β‰  𝐡
12 opthhausdorff.3 . . . . . . 7 𝑂 β‰  𝑇
1311, 12pm3.2i 472 . . . . . 6 (𝑂 β‰  𝐡 ∧ 𝑂 β‰  𝑇)
1413olci 865 . . . . 5 ((𝐴 β‰  𝐡 ∧ 𝐴 β‰  𝑇) ∨ (𝑂 β‰  𝐡 ∧ 𝑂 β‰  𝑇))
15 prneimg 4817 . . . . 5 (((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐡 ∈ V ∧ 𝑇 ∈ V)) β†’ (((𝐴 β‰  𝐡 ∧ 𝐴 β‰  𝑇) ∨ (𝑂 β‰  𝐡 ∧ 𝑂 β‰  𝑇)) β†’ {𝐴, 𝑂} β‰  {𝐡, 𝑇}))
169, 14, 15mp2 9 . . . 4 {𝐴, 𝑂} β‰  {𝐡, 𝑇}
17 preq12nebg 4825 . . . 4 (({𝐴, 𝑂} ∈ V ∧ {𝐡, 𝑇} ∈ V ∧ {𝐴, 𝑂} β‰  {𝐡, 𝑇}) β†’ ({{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐢, 𝑂} ∧ {𝐡, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐡, 𝑇} = {𝐢, 𝑂}))))
181, 2, 16, 17mp3an 1462 . . 3 ({{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐢, 𝑂} ∧ {𝐡, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐡, 𝑇} = {𝐢, 𝑂})))
19 opthhausdorff.o . . . . . 6 𝐴 β‰  𝑂
20 preq12nebg 4825 . . . . . 6 ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 β‰  𝑂) β†’ ({𝐴, 𝑂} = {𝐢, 𝑂} ↔ ((𝐴 = 𝐢 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐢))))
213, 4, 19, 20mp3an 1462 . . . . 5 ({𝐴, 𝑂} = {𝐢, 𝑂} ↔ ((𝐴 = 𝐢 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐢)))
22 opthhausdorff.t . . . . . 6 𝐡 β‰  𝑇
23 preq12nebg 4825 . . . . . 6 ((𝐡 ∈ V ∧ 𝑇 ∈ V ∧ 𝐡 β‰  𝑇) β†’ ({𝐡, 𝑇} = {𝐷, 𝑇} ↔ ((𝐡 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐡 = 𝑇 ∧ 𝑇 = 𝐷))))
246, 7, 22, 23mp3an 1462 . . . . 5 ({𝐡, 𝑇} = {𝐷, 𝑇} ↔ ((𝐡 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐡 = 𝑇 ∧ 𝑇 = 𝐷)))
25 simpl 484 . . . . . . 7 ((𝐴 = 𝐢 ∧ 𝑂 = 𝑂) β†’ 𝐴 = 𝐢)
26 simpl 484 . . . . . . 7 ((𝐡 = 𝐷 ∧ 𝑇 = 𝑇) β†’ 𝐡 = 𝐷)
2725, 26anim12i 614 . . . . . 6 (((𝐴 = 𝐢 ∧ 𝑂 = 𝑂) ∧ (𝐡 = 𝐷 ∧ 𝑇 = 𝑇)) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
28 eqneqall 2955 . . . . . . . 8 (𝐴 = 𝑂 β†’ (𝐴 β‰  𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
2919, 28mpi 20 . . . . . . 7 (𝐴 = 𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
3029adantr 482 . . . . . 6 ((𝐴 = 𝑂 ∧ 𝑂 = 𝐢) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
31 eqneqall 2955 . . . . . . . 8 (𝐡 = 𝑇 β†’ (𝐡 β‰  𝑇 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
3222, 31mpi 20 . . . . . . 7 (𝐡 = 𝑇 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
3332adantr 482 . . . . . 6 ((𝐡 = 𝑇 ∧ 𝑇 = 𝐷) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
3427, 30, 33ccase2 1039 . . . . 5 ((((𝐴 = 𝐢 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐢)) ∧ ((𝐡 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐡 = 𝑇 ∧ 𝑇 = 𝐷))) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
3521, 24, 34syl2anb 599 . . . 4 (({𝐴, 𝑂} = {𝐢, 𝑂} ∧ {𝐡, 𝑇} = {𝐷, 𝑇}) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
36 preq12nebg 4825 . . . . . 6 ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 β‰  𝑂) β†’ ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷))))
373, 4, 19, 36mp3an 1462 . . . . 5 ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)))
38 preq12nebg 4825 . . . . . 6 ((𝐡 ∈ V ∧ 𝑇 ∈ V ∧ 𝐡 β‰  𝑇) β†’ ({𝐡, 𝑇} = {𝐢, 𝑂} ↔ ((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢))))
396, 7, 22, 38mp3an 1462 . . . . 5 ({𝐡, 𝑇} = {𝐢, 𝑂} ↔ ((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢)))
40 eqneqall 2955 . . . . . . . . . 10 (𝑂 = 𝑇 β†’ (𝑂 β‰  𝑇 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
4112, 40mpi 20 . . . . . . . . 9 (𝑂 = 𝑇 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
4241adantl 483 . . . . . . . 8 ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
4342a1d 25 . . . . . . 7 ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) β†’ (((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢)) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
4412necomi 2999 . . . . . . . . . . . 12 𝑇 β‰  𝑂
45 eqneqall 2955 . . . . . . . . . . . 12 (𝑇 = 𝑂 β†’ (𝑇 β‰  𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
4644, 45mpi 20 . . . . . . . . . . 11 (𝑇 = 𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
4746adantl 483 . . . . . . . . . 10 ((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
4847a1d 25 . . . . . . . . 9 ((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) β†’ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
49 eqneqall 2955 . . . . . . . . . . . 12 (𝐡 = 𝑂 β†’ (𝐡 β‰  𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
5010, 49mpi 20 . . . . . . . . . . 11 (𝐡 = 𝑂 β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
5150adantr 482 . . . . . . . . . 10 ((𝐡 = 𝑂 ∧ 𝑇 = 𝐢) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
5251a1d 25 . . . . . . . . 9 ((𝐡 = 𝑂 ∧ 𝑇 = 𝐢) β†’ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
5348, 52jaoi 856 . . . . . . . 8 (((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢)) β†’ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
5453com12 32 . . . . . . 7 ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) β†’ (((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢)) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
5543, 54jaoi 856 . . . . . 6 (((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) β†’ (((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢)) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
5655imp 408 . . . . 5 ((((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) ∧ ((𝐡 = 𝐢 ∧ 𝑇 = 𝑂) ∨ (𝐡 = 𝑂 ∧ 𝑇 = 𝐢))) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
5737, 39, 56syl2anb 599 . . . 4 (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐡, 𝑇} = {𝐢, 𝑂}) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
5835, 57jaoi 856 . . 3 ((({𝐴, 𝑂} = {𝐢, 𝑂} ∧ {𝐡, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐡, 𝑇} = {𝐢, 𝑂})) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
5918, 58sylbi 216 . 2 ({{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}} β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
60 preq1 4699 . . . 4 (𝐴 = 𝐢 β†’ {𝐴, 𝑂} = {𝐢, 𝑂})
6160adantr 482 . . 3 ((𝐴 = 𝐢 ∧ 𝐡 = 𝐷) β†’ {𝐴, 𝑂} = {𝐢, 𝑂})
62 preq1 4699 . . . 4 (𝐡 = 𝐷 β†’ {𝐡, 𝑇} = {𝐷, 𝑇})
6362adantl 483 . . 3 ((𝐴 = 𝐢 ∧ 𝐡 = 𝐷) β†’ {𝐡, 𝑇} = {𝐷, 𝑇})
6461, 63preq12d 4707 . 2 ((𝐴 = 𝐢 ∧ 𝐡 = 𝐷) β†’ {{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}})
6559, 64impbii 208 1 ({{𝐴, 𝑂}, {𝐡, 𝑇}} = {{𝐢, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  Vcvv 3448  {cpr 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-v 3450  df-dif 3918  df-un 3920  df-nul 4288  df-sn 4592  df-pr 4594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator