Proof of Theorem opthhausdorff
Step | Hyp | Ref
| Expression |
1 | | prex 5355 |
. . . 4
⊢ {𝐴, 𝑂} ∈ V |
2 | | prex 5355 |
. . . 4
⊢ {𝐵, 𝑇} ∈ V |
3 | | opthhausdorff.a |
. . . . . . 7
⊢ 𝐴 ∈ V |
4 | | opthhausdorff.1 |
. . . . . . 7
⊢ 𝑂 ∈ V |
5 | 3, 4 | pm3.2i 471 |
. . . . . 6
⊢ (𝐴 ∈ V ∧ 𝑂 ∈ V) |
6 | | opthhausdorff.b |
. . . . . . 7
⊢ 𝐵 ∈ V |
7 | | opthhausdorff.2 |
. . . . . . 7
⊢ 𝑇 ∈ V |
8 | 6, 7 | pm3.2i 471 |
. . . . . 6
⊢ (𝐵 ∈ V ∧ 𝑇 ∈ V) |
9 | 5, 8 | pm3.2i 471 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐵 ∈ V ∧ 𝑇 ∈ V)) |
10 | | opthhausdorff.n |
. . . . . . . 8
⊢ 𝐵 ≠ 𝑂 |
11 | 10 | necomi 2998 |
. . . . . . 7
⊢ 𝑂 ≠ 𝐵 |
12 | | opthhausdorff.3 |
. . . . . . 7
⊢ 𝑂 ≠ 𝑇 |
13 | 11, 12 | pm3.2i 471 |
. . . . . 6
⊢ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇) |
14 | 13 | olci 863 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇) ∨ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇)) |
15 | | prneimg 4785 |
. . . . 5
⊢ (((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐵 ∈ V ∧ 𝑇 ∈ V)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇) ∨ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇)) → {𝐴, 𝑂} ≠ {𝐵, 𝑇})) |
16 | 9, 14, 15 | mp2 9 |
. . . 4
⊢ {𝐴, 𝑂} ≠ {𝐵, 𝑇} |
17 | | preq12nebg 4793 |
. . . 4
⊢ (({𝐴, 𝑂} ∈ V ∧ {𝐵, 𝑇} ∈ V ∧ {𝐴, 𝑂} ≠ {𝐵, 𝑇}) → ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})))) |
18 | 1, 2, 16, 17 | mp3an 1460 |
. . 3
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}))) |
19 | | opthhausdorff.o |
. . . . . 6
⊢ 𝐴 ≠ 𝑂 |
20 | | preq12nebg 4793 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂) → ({𝐴, 𝑂} = {𝐶, 𝑂} ↔ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶)))) |
21 | 3, 4, 19, 20 | mp3an 1460 |
. . . . 5
⊢ ({𝐴, 𝑂} = {𝐶, 𝑂} ↔ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶))) |
22 | | opthhausdorff.t |
. . . . . 6
⊢ 𝐵 ≠ 𝑇 |
23 | | preq12nebg 4793 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇) → ({𝐵, 𝑇} = {𝐷, 𝑇} ↔ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷)))) |
24 | 6, 7, 22, 23 | mp3an 1460 |
. . . . 5
⊢ ({𝐵, 𝑇} = {𝐷, 𝑇} ↔ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷))) |
25 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) → 𝐴 = 𝐶) |
26 | | simpl 483 |
. . . . . . 7
⊢ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) → 𝐵 = 𝐷) |
27 | 25, 26 | anim12i 613 |
. . . . . 6
⊢ (((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∧ (𝐵 = 𝐷 ∧ 𝑇 = 𝑇)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
28 | | eqneqall 2954 |
. . . . . . . 8
⊢ (𝐴 = 𝑂 → (𝐴 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
29 | 19, 28 | mpi 20 |
. . . . . . 7
⊢ (𝐴 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
30 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝐴 = 𝑂 ∧ 𝑂 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
31 | | eqneqall 2954 |
. . . . . . . 8
⊢ (𝐵 = 𝑇 → (𝐵 ≠ 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
32 | 22, 31 | mpi 20 |
. . . . . . 7
⊢ (𝐵 = 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
33 | 32 | adantr 481 |
. . . . . 6
⊢ ((𝐵 = 𝑇 ∧ 𝑇 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
34 | 27, 30, 33 | ccase2 1037 |
. . . . 5
⊢ ((((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶)) ∧ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
35 | 21, 24, 34 | syl2anb 598 |
. . . 4
⊢ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
36 | | preq12nebg 4793 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂) → ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)))) |
37 | 3, 4, 19, 36 | mp3an 1460 |
. . . . 5
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷))) |
38 | | preq12nebg 4793 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇) → ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)))) |
39 | 6, 7, 22, 38 | mp3an 1460 |
. . . . 5
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) |
40 | | eqneqall 2954 |
. . . . . . . . . 10
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
41 | 12, 40 | mpi 20 |
. . . . . . . . 9
⊢ (𝑂 = 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
42 | 41 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
43 | 42 | a1d 25 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
44 | 12 | necomi 2998 |
. . . . . . . . . . . 12
⊢ 𝑇 ≠ 𝑂 |
45 | | eqneqall 2954 |
. . . . . . . . . . . 12
⊢ (𝑇 = 𝑂 → (𝑇 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
46 | 44, 45 | mpi 20 |
. . . . . . . . . . 11
⊢ (𝑇 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
47 | 46 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
48 | 47 | a1d 25 |
. . . . . . . . 9
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
49 | | eqneqall 2954 |
. . . . . . . . . . . 12
⊢ (𝐵 = 𝑂 → (𝐵 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
50 | 10, 49 | mpi 20 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
51 | 50 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
52 | 51 | a1d 25 |
. . . . . . . . 9
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
53 | 48, 52 | jaoi 854 |
. . . . . . . 8
⊢ (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
54 | 53 | com12 32 |
. . . . . . 7
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
55 | 43, 54 | jaoi 854 |
. . . . . 6
⊢ (((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
56 | 55 | imp 407 |
. . . . 5
⊢ ((((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) ∧ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
57 | 37, 39, 56 | syl2anb 598 |
. . . 4
⊢ (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
58 | 35, 57 | jaoi 854 |
. . 3
⊢ ((({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
59 | 18, 58 | sylbi 216 |
. 2
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
60 | | preq1 4669 |
. . . 4
⊢ (𝐴 = 𝐶 → {𝐴, 𝑂} = {𝐶, 𝑂}) |
61 | 60 | adantr 481 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝑂} = {𝐶, 𝑂}) |
62 | | preq1 4669 |
. . . 4
⊢ (𝐵 = 𝐷 → {𝐵, 𝑇} = {𝐷, 𝑇}) |
63 | 62 | adantl 482 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐵, 𝑇} = {𝐷, 𝑇}) |
64 | 61, 63 | preq12d 4677 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}}) |
65 | 59, 64 | impbii 208 |
1
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |