Proof of Theorem opthhausdorff
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prex 5437 | . . . 4
⊢ {𝐴, 𝑂} ∈ V | 
| 2 |  | prex 5437 | . . . 4
⊢ {𝐵, 𝑇} ∈ V | 
| 3 |  | opthhausdorff.a | . . . . . . 7
⊢ 𝐴 ∈ V | 
| 4 |  | opthhausdorff.1 | . . . . . . 7
⊢ 𝑂 ∈ V | 
| 5 | 3, 4 | pm3.2i 470 | . . . . . 6
⊢ (𝐴 ∈ V ∧ 𝑂 ∈ V) | 
| 6 |  | opthhausdorff.b | . . . . . . 7
⊢ 𝐵 ∈ V | 
| 7 |  | opthhausdorff.2 | . . . . . . 7
⊢ 𝑇 ∈ V | 
| 8 | 6, 7 | pm3.2i 470 | . . . . . 6
⊢ (𝐵 ∈ V ∧ 𝑇 ∈ V) | 
| 9 | 5, 8 | pm3.2i 470 | . . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐵 ∈ V ∧ 𝑇 ∈ V)) | 
| 10 |  | opthhausdorff.n | . . . . . . . 8
⊢ 𝐵 ≠ 𝑂 | 
| 11 | 10 | necomi 2995 | . . . . . . 7
⊢ 𝑂 ≠ 𝐵 | 
| 12 |  | opthhausdorff.3 | . . . . . . 7
⊢ 𝑂 ≠ 𝑇 | 
| 13 | 11, 12 | pm3.2i 470 | . . . . . 6
⊢ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇) | 
| 14 | 13 | olci 867 | . . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇) ∨ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇)) | 
| 15 |  | prneimg 4854 | . . . . 5
⊢ (((𝐴 ∈ V ∧ 𝑂 ∈ V) ∧ (𝐵 ∈ V ∧ 𝑇 ∈ V)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇) ∨ (𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇)) → {𝐴, 𝑂} ≠ {𝐵, 𝑇})) | 
| 16 | 9, 14, 15 | mp2 9 | . . . 4
⊢ {𝐴, 𝑂} ≠ {𝐵, 𝑇} | 
| 17 |  | preq12nebg 4863 | . . . 4
⊢ (({𝐴, 𝑂} ∈ V ∧ {𝐵, 𝑇} ∈ V ∧ {𝐴, 𝑂} ≠ {𝐵, 𝑇}) → ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})))) | 
| 18 | 1, 2, 16, 17 | mp3an 1463 | . . 3
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}))) | 
| 19 |  | opthhausdorff.o | . . . . . 6
⊢ 𝐴 ≠ 𝑂 | 
| 20 |  | preq12nebg 4863 | . . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂) → ({𝐴, 𝑂} = {𝐶, 𝑂} ↔ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶)))) | 
| 21 | 3, 4, 19, 20 | mp3an 1463 | . . . . 5
⊢ ({𝐴, 𝑂} = {𝐶, 𝑂} ↔ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶))) | 
| 22 |  | opthhausdorff.t | . . . . . 6
⊢ 𝐵 ≠ 𝑇 | 
| 23 |  | preq12nebg 4863 | . . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇) → ({𝐵, 𝑇} = {𝐷, 𝑇} ↔ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷)))) | 
| 24 | 6, 7, 22, 23 | mp3an 1463 | . . . . 5
⊢ ({𝐵, 𝑇} = {𝐷, 𝑇} ↔ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷))) | 
| 25 |  | simpl 482 | . . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) → 𝐴 = 𝐶) | 
| 26 |  | simpl 482 | . . . . . . 7
⊢ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) → 𝐵 = 𝐷) | 
| 27 | 25, 26 | anim12i 613 | . . . . . 6
⊢ (((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∧ (𝐵 = 𝐷 ∧ 𝑇 = 𝑇)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 28 |  | eqneqall 2951 | . . . . . . . 8
⊢ (𝐴 = 𝑂 → (𝐴 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 29 | 19, 28 | mpi 20 | . . . . . . 7
⊢ (𝐴 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ ((𝐴 = 𝑂 ∧ 𝑂 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 31 |  | eqneqall 2951 | . . . . . . . 8
⊢ (𝐵 = 𝑇 → (𝐵 ≠ 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 32 | 22, 31 | mpi 20 | . . . . . . 7
⊢ (𝐵 = 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 33 | 32 | adantr 480 | . . . . . 6
⊢ ((𝐵 = 𝑇 ∧ 𝑇 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 34 | 27, 30, 33 | ccase2 1040 | . . . . 5
⊢ ((((𝐴 = 𝐶 ∧ 𝑂 = 𝑂) ∨ (𝐴 = 𝑂 ∧ 𝑂 = 𝐶)) ∧ ((𝐵 = 𝐷 ∧ 𝑇 = 𝑇) ∨ (𝐵 = 𝑇 ∧ 𝑇 = 𝐷))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 35 | 21, 24, 34 | syl2anb 598 | . . . 4
⊢ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 36 |  | preq12nebg 4863 | . . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂) → ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)))) | 
| 37 | 3, 4, 19, 36 | mp3an 1463 | . . . . 5
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷))) | 
| 38 |  | preq12nebg 4863 | . . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇) → ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)))) | 
| 39 | 6, 7, 22, 38 | mp3an 1463 | . . . . 5
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) | 
| 40 |  | eqneqall 2951 | . . . . . . . . . 10
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 41 | 12, 40 | mpi 20 | . . . . . . . . 9
⊢ (𝑂 = 𝑇 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 42 | 41 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 43 | 42 | a1d 25 | . . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 44 | 12 | necomi 2995 | . . . . . . . . . . . 12
⊢ 𝑇 ≠ 𝑂 | 
| 45 |  | eqneqall 2951 | . . . . . . . . . . . 12
⊢ (𝑇 = 𝑂 → (𝑇 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 46 | 44, 45 | mpi 20 | . . . . . . . . . . 11
⊢ (𝑇 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 47 | 46 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 48 | 47 | a1d 25 | . . . . . . . . 9
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 49 |  | eqneqall 2951 | . . . . . . . . . . . 12
⊢ (𝐵 = 𝑂 → (𝐵 ≠ 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 50 | 10, 49 | mpi 20 | . . . . . . . . . . 11
⊢ (𝐵 = 𝑂 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 51 | 50 | adantr 480 | . . . . . . . . . 10
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 52 | 51 | a1d 25 | . . . . . . . . 9
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 53 | 48, 52 | jaoi 858 | . . . . . . . 8
⊢ (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 54 | 53 | com12 32 | . . . . . . 7
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 55 | 43, 54 | jaoi 858 | . . . . . 6
⊢ (((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 56 | 55 | imp 406 | . . . . 5
⊢ ((((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) ∧ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 57 | 37, 39, 56 | syl2anb 598 | . . . 4
⊢ (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 58 | 35, 57 | jaoi 858 | . . 3
⊢ ((({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 59 | 18, 58 | sylbi 217 | . 2
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 60 |  | preq1 4733 | . . . 4
⊢ (𝐴 = 𝐶 → {𝐴, 𝑂} = {𝐶, 𝑂}) | 
| 61 | 60 | adantr 480 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝑂} = {𝐶, 𝑂}) | 
| 62 |  | preq1 4733 | . . . 4
⊢ (𝐵 = 𝐷 → {𝐵, 𝑇} = {𝐷, 𝑇}) | 
| 63 | 62 | adantl 481 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐵, 𝑇} = {𝐷, 𝑇}) | 
| 64 | 61, 63 | preq12d 4741 | . 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}}) | 
| 65 | 59, 64 | impbii 209 | 1
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |