Step | Hyp | Ref
| Expression |
1 | | prex 5394 |
. . . 4
β’ {π΄, π} β V |
2 | | prex 5394 |
. . . 4
β’ {π΅, π} β V |
3 | | opthhausdorff.a |
. . . . . . 7
β’ π΄ β V |
4 | | opthhausdorff.1 |
. . . . . . 7
β’ π β V |
5 | 3, 4 | pm3.2i 472 |
. . . . . 6
β’ (π΄ β V β§ π β V) |
6 | | opthhausdorff.b |
. . . . . . 7
β’ π΅ β V |
7 | | opthhausdorff.2 |
. . . . . . 7
β’ π β V |
8 | 6, 7 | pm3.2i 472 |
. . . . . 6
β’ (π΅ β V β§ π β V) |
9 | 5, 8 | pm3.2i 472 |
. . . . 5
β’ ((π΄ β V β§ π β V) β§ (π΅ β V β§ π β V)) |
10 | | opthhausdorff.n |
. . . . . . . 8
β’ π΅ β π |
11 | 10 | necomi 2999 |
. . . . . . 7
β’ π β π΅ |
12 | | opthhausdorff.3 |
. . . . . . 7
β’ π β π |
13 | 11, 12 | pm3.2i 472 |
. . . . . 6
β’ (π β π΅ β§ π β π) |
14 | 13 | olci 865 |
. . . . 5
β’ ((π΄ β π΅ β§ π΄ β π) β¨ (π β π΅ β§ π β π)) |
15 | | prneimg 4817 |
. . . . 5
β’ (((π΄ β V β§ π β V) β§ (π΅ β V β§ π β V)) β (((π΄ β π΅ β§ π΄ β π) β¨ (π β π΅ β§ π β π)) β {π΄, π} β {π΅, π})) |
16 | 9, 14, 15 | mp2 9 |
. . . 4
β’ {π΄, π} β {π΅, π} |
17 | | preq12nebg 4825 |
. . . 4
β’ (({π΄, π} β V β§ {π΅, π} β V β§ {π΄, π} β {π΅, π}) β ({{π΄, π}, {π΅, π}} = {{πΆ, π}, {π·, π}} β (({π΄, π} = {πΆ, π} β§ {π΅, π} = {π·, π}) β¨ ({π΄, π} = {π·, π} β§ {π΅, π} = {πΆ, π})))) |
18 | 1, 2, 16, 17 | mp3an 1462 |
. . 3
β’ ({{π΄, π}, {π΅, π}} = {{πΆ, π}, {π·, π}} β (({π΄, π} = {πΆ, π} β§ {π΅, π} = {π·, π}) β¨ ({π΄, π} = {π·, π} β§ {π΅, π} = {πΆ, π}))) |
19 | | opthhausdorff.o |
. . . . . 6
β’ π΄ β π |
20 | | preq12nebg 4825 |
. . . . . 6
β’ ((π΄ β V β§ π β V β§ π΄ β π) β ({π΄, π} = {πΆ, π} β ((π΄ = πΆ β§ π = π) β¨ (π΄ = π β§ π = πΆ)))) |
21 | 3, 4, 19, 20 | mp3an 1462 |
. . . . 5
β’ ({π΄, π} = {πΆ, π} β ((π΄ = πΆ β§ π = π) β¨ (π΄ = π β§ π = πΆ))) |
22 | | opthhausdorff.t |
. . . . . 6
β’ π΅ β π |
23 | | preq12nebg 4825 |
. . . . . 6
β’ ((π΅ β V β§ π β V β§ π΅ β π) β ({π΅, π} = {π·, π} β ((π΅ = π· β§ π = π) β¨ (π΅ = π β§ π = π·)))) |
24 | 6, 7, 22, 23 | mp3an 1462 |
. . . . 5
β’ ({π΅, π} = {π·, π} β ((π΅ = π· β§ π = π) β¨ (π΅ = π β§ π = π·))) |
25 | | simpl 484 |
. . . . . . 7
β’ ((π΄ = πΆ β§ π = π) β π΄ = πΆ) |
26 | | simpl 484 |
. . . . . . 7
β’ ((π΅ = π· β§ π = π) β π΅ = π·) |
27 | 25, 26 | anim12i 614 |
. . . . . 6
β’ (((π΄ = πΆ β§ π = π) β§ (π΅ = π· β§ π = π)) β (π΄ = πΆ β§ π΅ = π·)) |
28 | | eqneqall 2955 |
. . . . . . . 8
β’ (π΄ = π β (π΄ β π β (π΄ = πΆ β§ π΅ = π·))) |
29 | 19, 28 | mpi 20 |
. . . . . . 7
β’ (π΄ = π β (π΄ = πΆ β§ π΅ = π·)) |
30 | 29 | adantr 482 |
. . . . . 6
β’ ((π΄ = π β§ π = πΆ) β (π΄ = πΆ β§ π΅ = π·)) |
31 | | eqneqall 2955 |
. . . . . . . 8
β’ (π΅ = π β (π΅ β π β (π΄ = πΆ β§ π΅ = π·))) |
32 | 22, 31 | mpi 20 |
. . . . . . 7
β’ (π΅ = π β (π΄ = πΆ β§ π΅ = π·)) |
33 | 32 | adantr 482 |
. . . . . 6
β’ ((π΅ = π β§ π = π·) β (π΄ = πΆ β§ π΅ = π·)) |
34 | 27, 30, 33 | ccase2 1039 |
. . . . 5
β’ ((((π΄ = πΆ β§ π = π) β¨ (π΄ = π β§ π = πΆ)) β§ ((π΅ = π· β§ π = π) β¨ (π΅ = π β§ π = π·))) β (π΄ = πΆ β§ π΅ = π·)) |
35 | 21, 24, 34 | syl2anb 599 |
. . . 4
β’ (({π΄, π} = {πΆ, π} β§ {π΅, π} = {π·, π}) β (π΄ = πΆ β§ π΅ = π·)) |
36 | | preq12nebg 4825 |
. . . . . 6
β’ ((π΄ β V β§ π β V β§ π΄ β π) β ({π΄, π} = {π·, π} β ((π΄ = π· β§ π = π) β¨ (π΄ = π β§ π = π·)))) |
37 | 3, 4, 19, 36 | mp3an 1462 |
. . . . 5
β’ ({π΄, π} = {π·, π} β ((π΄ = π· β§ π = π) β¨ (π΄ = π β§ π = π·))) |
38 | | preq12nebg 4825 |
. . . . . 6
β’ ((π΅ β V β§ π β V β§ π΅ β π) β ({π΅, π} = {πΆ, π} β ((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ)))) |
39 | 6, 7, 22, 38 | mp3an 1462 |
. . . . 5
β’ ({π΅, π} = {πΆ, π} β ((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ))) |
40 | | eqneqall 2955 |
. . . . . . . . . 10
β’ (π = π β (π β π β (π΄ = πΆ β§ π΅ = π·))) |
41 | 12, 40 | mpi 20 |
. . . . . . . . 9
β’ (π = π β (π΄ = πΆ β§ π΅ = π·)) |
42 | 41 | adantl 483 |
. . . . . . . 8
β’ ((π΄ = π· β§ π = π) β (π΄ = πΆ β§ π΅ = π·)) |
43 | 42 | a1d 25 |
. . . . . . 7
β’ ((π΄ = π· β§ π = π) β (((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ)) β (π΄ = πΆ β§ π΅ = π·))) |
44 | 12 | necomi 2999 |
. . . . . . . . . . . 12
β’ π β π |
45 | | eqneqall 2955 |
. . . . . . . . . . . 12
β’ (π = π β (π β π β (π΄ = πΆ β§ π΅ = π·))) |
46 | 44, 45 | mpi 20 |
. . . . . . . . . . 11
β’ (π = π β (π΄ = πΆ β§ π΅ = π·)) |
47 | 46 | adantl 483 |
. . . . . . . . . 10
β’ ((π΅ = πΆ β§ π = π) β (π΄ = πΆ β§ π΅ = π·)) |
48 | 47 | a1d 25 |
. . . . . . . . 9
β’ ((π΅ = πΆ β§ π = π) β ((π΄ = π β§ π = π·) β (π΄ = πΆ β§ π΅ = π·))) |
49 | | eqneqall 2955 |
. . . . . . . . . . . 12
β’ (π΅ = π β (π΅ β π β (π΄ = πΆ β§ π΅ = π·))) |
50 | 10, 49 | mpi 20 |
. . . . . . . . . . 11
β’ (π΅ = π β (π΄ = πΆ β§ π΅ = π·)) |
51 | 50 | adantr 482 |
. . . . . . . . . 10
β’ ((π΅ = π β§ π = πΆ) β (π΄ = πΆ β§ π΅ = π·)) |
52 | 51 | a1d 25 |
. . . . . . . . 9
β’ ((π΅ = π β§ π = πΆ) β ((π΄ = π β§ π = π·) β (π΄ = πΆ β§ π΅ = π·))) |
53 | 48, 52 | jaoi 856 |
. . . . . . . 8
β’ (((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ)) β ((π΄ = π β§ π = π·) β (π΄ = πΆ β§ π΅ = π·))) |
54 | 53 | com12 32 |
. . . . . . 7
β’ ((π΄ = π β§ π = π·) β (((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ)) β (π΄ = πΆ β§ π΅ = π·))) |
55 | 43, 54 | jaoi 856 |
. . . . . 6
β’ (((π΄ = π· β§ π = π) β¨ (π΄ = π β§ π = π·)) β (((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ)) β (π΄ = πΆ β§ π΅ = π·))) |
56 | 55 | imp 408 |
. . . . 5
β’ ((((π΄ = π· β§ π = π) β¨ (π΄ = π β§ π = π·)) β§ ((π΅ = πΆ β§ π = π) β¨ (π΅ = π β§ π = πΆ))) β (π΄ = πΆ β§ π΅ = π·)) |
57 | 37, 39, 56 | syl2anb 599 |
. . . 4
β’ (({π΄, π} = {π·, π} β§ {π΅, π} = {πΆ, π}) β (π΄ = πΆ β§ π΅ = π·)) |
58 | 35, 57 | jaoi 856 |
. . 3
β’ ((({π΄, π} = {πΆ, π} β§ {π΅, π} = {π·, π}) β¨ ({π΄, π} = {π·, π} β§ {π΅, π} = {πΆ, π})) β (π΄ = πΆ β§ π΅ = π·)) |
59 | 18, 58 | sylbi 216 |
. 2
β’ ({{π΄, π}, {π΅, π}} = {{πΆ, π}, {π·, π}} β (π΄ = πΆ β§ π΅ = π·)) |
60 | | preq1 4699 |
. . . 4
β’ (π΄ = πΆ β {π΄, π} = {πΆ, π}) |
61 | 60 | adantr 482 |
. . 3
β’ ((π΄ = πΆ β§ π΅ = π·) β {π΄, π} = {πΆ, π}) |
62 | | preq1 4699 |
. . . 4
β’ (π΅ = π· β {π΅, π} = {π·, π}) |
63 | 62 | adantl 483 |
. . 3
β’ ((π΄ = πΆ β§ π΅ = π·) β {π΅, π} = {π·, π}) |
64 | 61, 63 | preq12d 4707 |
. 2
β’ ((π΄ = πΆ β§ π΅ = π·) β {{π΄, π}, {π΅, π}} = {{πΆ, π}, {π·, π}}) |
65 | 59, 64 | impbii 208 |
1
β’ ({{π΄, π}, {π΅, π}} = {{πΆ, π}, {π·, π}} β (π΄ = πΆ β§ π΅ = π·)) |