![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version |
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
Ref | Expression |
---|---|
ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
3 | 1, 2 | jaoian 954 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
6 | 4, 5 | jaoian 954 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
7 | 3, 6 | jaodan 955 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 |
This theorem is referenced by: ccased 1036 ccase2 1037 ssprsseq 4830 prel12g 4866 injresinjlem 13788 prodmo 15916 nn0gcdsq 16727 symgextf1 19388 cnmsgnsubg 21526 nn0rppwr 42028 nn0expgcd 42030 dvdsexpnn0 42036 zaddcom 42142 zmulcom 42146 kelac2lem 42630 omcl3g 42905 |
Copyright terms: Public domain | W3C validator |