![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version |
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
Ref | Expression |
---|---|
ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
3 | 1, 2 | jaoian 956 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
6 | 4, 5 | jaoian 956 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
7 | 3, 6 | jaodan 957 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 |
This theorem is referenced by: ccased 1038 ccase2 1039 ssprsseq 4829 prel12g 4865 injresinjlem 13752 prodmo 15880 nn0gcdsq 16688 symgextf1 19289 cnmsgnsubg 21130 nn0rppwr 41224 nn0expgcd 41226 dvdsexpnn0 41232 zaddcom 41325 zmulcom 41329 kelac2lem 41806 omcl3g 42084 |
Copyright terms: Public domain | W3C validator |