| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version | ||
| Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
| Ref | Expression |
|---|---|
| ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
| ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
| 2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
| 3 | 1, 2 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
| 4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 6 | 4, 5 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
| 7 | 3, 6 | jaodan 959 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccased 1038 ccase2 1039 ssprsseq 4779 prel12g 4818 injresinjlem 13708 prodmo 15861 nn0rppwr 16490 nn0expgcd 16493 nn0gcdsq 16681 symgextf1 19318 cnmsgnsubg 21502 zseo 28332 dvdsexpnn0 42310 zaddcom 42440 zmulcom 42444 kelac2lem 43040 omcl3g 43310 usgrexmpl2trifr 48025 |
| Copyright terms: Public domain | W3C validator |