MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccase Structured version   Visualization version   GIF version

Theorem ccase 1035
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1 ((𝜑𝜓) → 𝜏)
ccase.2 ((𝜒𝜓) → 𝜏)
ccase.3 ((𝜑𝜃) → 𝜏)
ccase.4 ((𝜒𝜃) → 𝜏)
Assertion
Ref Expression
ccase (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3 ((𝜑𝜓) → 𝜏)
2 ccase.2 . . 3 ((𝜒𝜓) → 𝜏)
31, 2jaoian 954 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜏)
4 ccase.3 . . 3 ((𝜑𝜃) → 𝜏)
5 ccase.4 . . 3 ((𝜒𝜃) → 𝜏)
64, 5jaoian 954 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
73, 6jaodan 955 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846
This theorem is referenced by:  ccased  1036  ccase2  1037  ssprsseq  4830  prel12g  4866  injresinjlem  13788  prodmo  15916  nn0gcdsq  16727  symgextf1  19388  cnmsgnsubg  21526  nn0rppwr  42028  nn0expgcd  42030  dvdsexpnn0  42036  zaddcom  42142  zmulcom  42146  kelac2lem  42630  omcl3g  42905
  Copyright terms: Public domain W3C validator