| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version | ||
| Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
| Ref | Expression |
|---|---|
| ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
| ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
| 2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
| 3 | 1, 2 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
| 4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 6 | 4, 5 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
| 7 | 3, 6 | jaodan 959 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccased 1038 ccase2 1039 ssprsseq 4806 prel12g 4845 injresinjlem 13808 prodmo 15957 nn0rppwr 16585 nn0expgcd 16588 nn0gcdsq 16776 symgextf1 19407 cnmsgnsubg 21542 zseo 28365 dvdsexpnn0 42350 zaddcom 42462 zmulcom 42466 kelac2lem 43055 omcl3g 43325 usgrexmpl2trifr 48008 |
| Copyright terms: Public domain | W3C validator |