| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version | ||
| Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
| Ref | Expression |
|---|---|
| ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
| ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
| 2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
| 3 | 1, 2 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
| 4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 6 | 4, 5 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
| 7 | 3, 6 | jaodan 959 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccased 1038 ccase2 1039 ssprsseq 4789 prel12g 4828 injresinjlem 13748 prodmo 15902 nn0rppwr 16531 nn0expgcd 16534 nn0gcdsq 16722 symgextf1 19351 cnmsgnsubg 21486 zseo 28308 dvdsexpnn0 42322 zaddcom 42452 zmulcom 42456 kelac2lem 43053 omcl3g 43323 usgrexmpl2trifr 48028 |
| Copyright terms: Public domain | W3C validator |