MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccase Structured version   Visualization version   GIF version

Theorem ccase 1037
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1 ((𝜑𝜓) → 𝜏)
ccase.2 ((𝜒𝜓) → 𝜏)
ccase.3 ((𝜑𝜃) → 𝜏)
ccase.4 ((𝜒𝜃) → 𝜏)
Assertion
Ref Expression
ccase (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3 ((𝜑𝜓) → 𝜏)
2 ccase.2 . . 3 ((𝜒𝜓) → 𝜏)
31, 2jaoian 958 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜏)
4 ccase.3 . . 3 ((𝜑𝜃) → 𝜏)
5 ccase.4 . . 3 ((𝜒𝜃) → 𝜏)
64, 5jaoian 958 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
73, 6jaodan 959 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  ccased  1038  ccase2  1039  ssprsseq  4805  prel12g  4844  injresinjlem  13808  prodmo  15955  nn0rppwr  16581  nn0expgcd  16584  nn0gcdsq  16772  symgextf1  19408  cnmsgnsubg  21550  zseo  28343  dvdsexpnn0  42348  zaddcom  42461  zmulcom  42465  kelac2lem  43054  omcl3g  43324  usgrexmpl2trifr  47969
  Copyright terms: Public domain W3C validator