MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccase Structured version   Visualization version   GIF version

Theorem ccase 1037
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1 ((𝜑𝜓) → 𝜏)
ccase.2 ((𝜒𝜓) → 𝜏)
ccase.3 ((𝜑𝜃) → 𝜏)
ccase.4 ((𝜒𝜃) → 𝜏)
Assertion
Ref Expression
ccase (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3 ((𝜑𝜓) → 𝜏)
2 ccase.2 . . 3 ((𝜒𝜓) → 𝜏)
31, 2jaoian 958 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜏)
4 ccase.3 . . 3 ((𝜑𝜃) → 𝜏)
5 ccase.4 . . 3 ((𝜒𝜃) → 𝜏)
64, 5jaoian 958 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
73, 6jaodan 959 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  ccased  1038  ccase2  1039  ssprsseq  4779  prel12g  4818  injresinjlem  13708  prodmo  15861  nn0rppwr  16490  nn0expgcd  16493  nn0gcdsq  16681  symgextf1  19318  cnmsgnsubg  21502  zseo  28332  dvdsexpnn0  42310  zaddcom  42440  zmulcom  42444  kelac2lem  43040  omcl3g  43310  usgrexmpl2trifr  48025
  Copyright terms: Public domain W3C validator