| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccase | Structured version Visualization version GIF version | ||
| Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
| Ref | Expression |
|---|---|
| ccase.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| ccase.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜏) |
| ccase.3 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| ccase.4 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| ccase | ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | |
| 2 | ccase.2 | . . 3 ⊢ ((𝜒 ∧ 𝜓) → 𝜏) | |
| 3 | 1, 2 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜓) → 𝜏) |
| 4 | ccase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 5 | ccase.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 6 | 4, 5 | jaoian 958 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ 𝜃) → 𝜏) |
| 7 | 3, 6 | jaodan 959 | 1 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccased 1038 ccase2 1039 ssprsseq 4792 prel12g 4831 injresinjlem 13755 prodmo 15909 nn0rppwr 16538 nn0expgcd 16541 nn0gcdsq 16729 symgextf1 19358 cnmsgnsubg 21493 zseo 28315 dvdsexpnn0 42329 zaddcom 42459 zmulcom 42463 kelac2lem 43060 omcl3g 43330 usgrexmpl2trifr 48032 |
| Copyright terms: Public domain | W3C validator |