| Step | Hyp | Ref
| Expression |
| 1 | | difeq2 4120 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ ∪ 𝑦)) |
| 2 | 1 | breq1d 5153 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
| 3 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → (𝑥 = ∅ ↔ ∪ 𝑦 =
∅)) |
| 4 | 2, 3 | orbi12d 919 |
. . . . . 6
⊢ (𝑥 = ∪
𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅))) |
| 5 | | uniss 4915 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 6 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 |
| 7 | | sspwuni 5100 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 8 | 6, 7 | mpbi 230 |
. . . . . . . 8
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴 |
| 9 | 5, 8 | sstrdi 3996 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ 𝐴) |
| 10 | | vuniex 7759 |
. . . . . . . 8
⊢ ∪ 𝑦
∈ V |
| 11 | 10 | elpw 4604 |
. . . . . . 7
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
| 12 | 9, 11 | sylibr 234 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ 𝒫 𝐴) |
| 13 | | uni0c 4934 |
. . . . . . . . . . 11
⊢ (∪ 𝑦 =
∅ ↔ ∀𝑧
∈ 𝑦 𝑧 = ∅) |
| 14 | 13 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
∪ 𝑦 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
| 15 | | rexnal 3100 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
| 16 | 14, 15 | bitr4i 278 |
. . . . . . . . 9
⊢ (¬
∪ 𝑦 = ∅ ↔ ∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅) |
| 17 | | ssel2 3978 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 18 | | difeq2 4120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑧)) |
| 19 | 18 | breq1d 5153 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑧) ≼ ω)) |
| 20 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅)) |
| 21 | 19, 20 | orbi12d 919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 22 | 21 | elrab 3692 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 23 | 17, 22 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 24 | 23 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) |
| 25 | 24 | ord 865 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ (𝐴 ∖ 𝑧) ≼ ω → 𝑧 = ∅)) |
| 26 | 25 | con1d 145 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 = ∅ → (𝐴 ∖ 𝑧) ≼ ω)) |
| 27 | 26 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ 𝑧) ≼ ω) |
| 28 | | ctex 9004 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑧) ≼ ω → (𝐴 ∖ 𝑧) ∈ V) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ 𝑧) ∈ V) |
| 30 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → 𝑧 ∈ 𝑦) |
| 31 | | elssuni 4937 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
| 32 | | sscon 4143 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ⊆ ∪ 𝑦
→ (𝐴 ∖ ∪ 𝑦)
⊆ (𝐴 ∖ 𝑧)) |
| 33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧)) |
| 34 | | ssdomg 9040 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑧) ∈ V → ((𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧))) |
| 35 | 29, 33, 34 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧)) |
| 36 | | domtr 9047 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ ∪ 𝑦)
≼ (𝐴 ∖ 𝑧) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 37 | 35, 36 | sylancom 588 |
. . . . . . . . . . 11
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 38 | 27, 37 | mpdan 687 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 39 | 38 | rexlimdva2 3157 |
. . . . . . . . 9
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
| 40 | 16, 39 | biimtrid 242 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ ∪ 𝑦 =
∅ → (𝐴 ∖
∪ 𝑦) ≼ ω)) |
| 41 | 40 | con1d 145 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 ∖ ∪ 𝑦) ≼ ω → ∪ 𝑦 =
∅)) |
| 42 | 41 | orrd 864 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅)) |
| 43 | 4, 12, 42 | elrabd 3694 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 44 | 43 | ax-gen 1795 |
. . . 4
⊢
∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 45 | | difeq2 4120 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
| 46 | 45 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑦) ≼ ω)) |
| 47 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
| 48 | 46, 47 | orbi12d 919 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
| 49 | 48 | elrab 3692 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
| 50 | | ssinss1 4246 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 51 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 52 | 51 | elpw 4604 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| 53 | 51 | inex1 5317 |
. . . . . . . . . . 11
⊢ (𝑦 ∩ 𝑧) ∈ V |
| 54 | 53 | elpw 4604 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 55 | 50, 52, 54 | 3imtr4i 292 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 57 | | difindi 4292 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑦 ∩ 𝑧)) = ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) |
| 58 | | unctb 10244 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) ≼ ω) |
| 59 | 57, 58 | eqbrtrid 5178 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω) |
| 60 | 59 | orcd 874 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 61 | | ineq1 4213 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = (∅ ∩ 𝑧)) |
| 62 | | 0in 4397 |
. . . . . . . . . . . 12
⊢ (∅
∩ 𝑧) =
∅ |
| 63 | 61, 62 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
| 64 | 63 | olcd 875 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 65 | | ineq2 4214 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = (𝑦 ∩ ∅)) |
| 66 | | in0 4395 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ ∅) =
∅ |
| 67 | 65, 66 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
| 68 | 67 | olcd 875 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 69 | 60, 64, 68 | ccase2 1040 |
. . . . . . . . 9
⊢ ((((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 70 | 69 | ad2ant2l 746 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 71 | 56, 70 | jca 511 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 72 | 49, 22, 71 | syl2anb 598 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 73 | | difeq2 4120 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑦 ∩ 𝑧))) |
| 74 | 73 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω)) |
| 75 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = ∅ ↔ (𝑦 ∩ 𝑧) = ∅)) |
| 76 | 74, 75 | orbi12d 919 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 77 | 76 | elrab 3692 |
. . . . . 6
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 78 | 72, 77 | sylibr 234 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 79 | 78 | rgen2 3199 |
. . . 4
⊢
∀𝑦 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} |
| 80 | 44, 79 | pm3.2i 470 |
. . 3
⊢
(∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 81 | | pwexg 5378 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 82 | | rabexg 5337 |
. . . 4
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V) |
| 83 | | istopg 22901 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
| 84 | 81, 82, 83 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
| 85 | 80, 84 | mpbiri 258 |
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top) |
| 86 | | difeq2 4120 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐴)) |
| 87 | | difid 4376 |
. . . . . . . 8
⊢ (𝐴 ∖ 𝐴) = ∅ |
| 88 | 86, 87 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = ∅) |
| 89 | 88 | breq1d 5153 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐴 ∖ 𝑥) ≼ ω ↔ ∅ ≼
ω)) |
| 90 | | eqeq1 2741 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) |
| 91 | 89, 90 | orbi12d 919 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω
∨ 𝐴 =
∅))) |
| 92 | | pwidg 4620 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| 93 | | omex 9683 |
. . . . . . . 8
⊢ ω
∈ V |
| 94 | 93 | 0dom 9146 |
. . . . . . 7
⊢ ∅
≼ ω |
| 95 | 94 | orci 866 |
. . . . . 6
⊢ (∅
≼ ω ∨ 𝐴 =
∅) |
| 96 | 95 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅)) |
| 97 | 91, 92, 96 | elrabd 3694 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 98 | | elssuni 4937 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 99 | 97, 98 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 100 | 8 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 101 | 99, 100 | eqssd 4001 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 102 | | istopon 22918 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = ∪
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)})) |
| 103 | 85, 101, 102 | sylanbrc 583 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) |