MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Visualization version   GIF version

Theorem cctop 22893
Description: The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4083 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
21breq1d 5117 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴 𝑦) ≼ ω))
3 eqeq1 2733 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
42, 3orbi12d 918 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
5 uniss 4879 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
6 ssrab2 4043 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
7 sspwuni 5064 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
86, 7mpbi 230 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴
95, 8sstrdi 3959 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦𝐴)
10 vuniex 7715 . . . . . . . 8 𝑦 ∈ V
1110elpw 4567 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
129, 11sylibr 234 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
13 uni0c 4898 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
1413notbii 320 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
15 rexnal 3082 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1614, 15bitr4i 278 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
17 ssel2 3941 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
18 difeq2 4083 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1918breq1d 5117 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑧) ≼ ω))
20 eqeq1 2733 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
2119, 20orbi12d 918 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2221elrab 3659 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2317, 22sylib 218 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2423simprd 495 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))
2524ord 864 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ≼ ω → 𝑧 = ∅))
2625con1d 145 . . . . . . . . . . . 12 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ≼ ω))
2726imp 406 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ≼ ω)
28 ctex 8935 . . . . . . . . . . . . . 14 ((𝐴𝑧) ≼ ω → (𝐴𝑧) ∈ V)
2928adantl 481 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴𝑧) ∈ V)
30 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → 𝑧𝑦)
31 elssuni 4901 . . . . . . . . . . . . . 14 (𝑧𝑦𝑧 𝑦)
32 sscon 4106 . . . . . . . . . . . . . 14 (𝑧 𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
3330, 31, 323syl 18 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ⊆ (𝐴𝑧))
34 ssdomg 8971 . . . . . . . . . . . . 13 ((𝐴𝑧) ∈ V → ((𝐴 𝑦) ⊆ (𝐴𝑧) → (𝐴 𝑦) ≼ (𝐴𝑧)))
3529, 33, 34sylc 65 . . . . . . . . . . . 12 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ (𝐴𝑧))
36 domtr 8978 . . . . . . . . . . . 12 (((𝐴 𝑦) ≼ (𝐴𝑧) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3735, 36sylancom 588 . . . . . . . . . . 11 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3827, 37mpdan 687 . . . . . . . . . 10 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ≼ ω)
3938rexlimdva2 3136 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω))
4016, 39biimtrid 242 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ≼ ω))
4140con1d 145 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ≼ ω → 𝑦 = ∅))
4241orrd 863 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅))
434, 12, 42elrabd 3661 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
4443ax-gen 1795 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
45 difeq2 4083 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
4645breq1d 5117 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑦) ≼ ω))
47 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
4846, 47orbi12d 918 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
4948elrab 3659 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
50 ssinss1 4209 . . . . . . . . . 10 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
51 vex 3451 . . . . . . . . . . 11 𝑦 ∈ V
5251elpw 4567 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
5351inex1 5272 . . . . . . . . . . 11 (𝑦𝑧) ∈ V
5453elpw 4567 . . . . . . . . . 10 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5550, 52, 543imtr4i 292 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
5655ad2antrr 726 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
57 difindi 4255 . . . . . . . . . . . 12 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
58 unctb 10157 . . . . . . . . . . . 12 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴𝑦) ∪ (𝐴𝑧)) ≼ ω)
5957, 58eqbrtrid 5142 . . . . . . . . . . 11 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → (𝐴 ∖ (𝑦𝑧)) ≼ ω)
6059orcd 873 . . . . . . . . . 10 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
61 ineq1 4176 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
62 0in 4360 . . . . . . . . . . . 12 (∅ ∩ 𝑧) = ∅
6361, 62eqtrdi 2780 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = ∅)
6463olcd 874 . . . . . . . . . 10 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
65 ineq2 4177 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
66 in0 4358 . . . . . . . . . . . 12 (𝑦 ∩ ∅) = ∅
6765, 66eqtrdi 2780 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = ∅)
6867olcd 874 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
6960, 64, 68ccase2 1039 . . . . . . . . 9 ((((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7069ad2ant2l 746 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7156, 70jca 511 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7249, 22, 71syl2anb 598 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
73 difeq2 4083 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7473breq1d 5117 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦𝑧)) ≼ ω))
75 eqeq1 2733 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7674, 75orbi12d 918 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7776elrab 3659 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7872, 77sylibr 234 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
7978rgen2 3177 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}
8044, 79pm3.2i 470 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
81 pwexg 5333 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
82 rabexg 5292 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V)
83 istopg 22782 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8481, 82, 833syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8580, 84mpbiri 258 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top)
86 difeq2 4083 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
87 difid 4339 . . . . . . . 8 (𝐴𝐴) = ∅
8886, 87eqtrdi 2780 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
8988breq1d 5117 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ≼ ω ↔ ∅ ≼ ω))
90 eqeq1 2733 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9189, 90orbi12d 918 . . . . 5 (𝑥 = 𝐴 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω ∨ 𝐴 = ∅)))
92 pwidg 4583 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
93 omex 9596 . . . . . . . 8 ω ∈ V
94930dom 9071 . . . . . . 7 ∅ ≼ ω
9594orci 865 . . . . . 6 (∅ ≼ ω ∨ 𝐴 = ∅)
9695a1i 11 . . . . 5 (𝐴𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅))
9791, 92, 96elrabd 3661 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
98 elssuni 4901 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
9997, 98syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
1008a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
10199, 100eqssd 3964 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
102 istopon 22799 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}))
10385, 101, 102sylanbrc 583 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cfv 6511  ωcom 7842  cdom 8916  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-dju 9854  df-card 9892  df-top 22781  df-topon 22798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator