MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Visualization version   GIF version

Theorem cctop 21616
Description: The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4095 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
21breq1d 5078 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴 𝑦) ≼ ω))
3 eqeq1 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
42, 3orbi12d 915 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
5 uniss 4848 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
6 ssrab2 4058 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
7 sspwuni 5024 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
86, 7mpbi 232 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴
95, 8sstrdi 3981 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦𝐴)
10 vuniex 7467 . . . . . . . 8 𝑦 ∈ V
1110elpw 4545 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
129, 11sylibr 236 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
13 uni0c 4867 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
1413notbii 322 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
15 rexnal 3240 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1614, 15bitr4i 280 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
17 ssel2 3964 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
18 difeq2 4095 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1918breq1d 5078 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑧) ≼ ω))
20 eqeq1 2827 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
2119, 20orbi12d 915 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2221elrab 3682 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2317, 22sylib 220 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2423simprd 498 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))
2524ord 860 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ≼ ω → 𝑧 = ∅))
2625con1d 147 . . . . . . . . . . . 12 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ≼ ω))
2726imp 409 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ≼ ω)
28 ctex 8526 . . . . . . . . . . . . . 14 ((𝐴𝑧) ≼ ω → (𝐴𝑧) ∈ V)
2928adantl 484 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴𝑧) ∈ V)
30 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → 𝑧𝑦)
31 elssuni 4870 . . . . . . . . . . . . . 14 (𝑧𝑦𝑧 𝑦)
32 sscon 4117 . . . . . . . . . . . . . 14 (𝑧 𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
3330, 31, 323syl 18 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ⊆ (𝐴𝑧))
34 ssdomg 8557 . . . . . . . . . . . . 13 ((𝐴𝑧) ∈ V → ((𝐴 𝑦) ⊆ (𝐴𝑧) → (𝐴 𝑦) ≼ (𝐴𝑧)))
3529, 33, 34sylc 65 . . . . . . . . . . . 12 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ (𝐴𝑧))
36 domtr 8564 . . . . . . . . . . . 12 (((𝐴 𝑦) ≼ (𝐴𝑧) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3735, 36sylancom 590 . . . . . . . . . . 11 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3827, 37mpdan 685 . . . . . . . . . 10 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ≼ ω)
3938rexlimdva2 3289 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω))
4016, 39syl5bi 244 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ≼ ω))
4140con1d 147 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ≼ ω → 𝑦 = ∅))
4241orrd 859 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅))
434, 12, 42elrabd 3684 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
4443ax-gen 1796 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
45 difeq2 4095 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
4645breq1d 5078 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑦) ≼ ω))
47 eqeq1 2827 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
4846, 47orbi12d 915 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
4948elrab 3682 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
50 ssinss1 4216 . . . . . . . . . 10 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
51 vex 3499 . . . . . . . . . . 11 𝑦 ∈ V
5251elpw 4545 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
5351inex1 5223 . . . . . . . . . . 11 (𝑦𝑧) ∈ V
5453elpw 4545 . . . . . . . . . 10 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5550, 52, 543imtr4i 294 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
5655ad2antrr 724 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
57 difindi 4260 . . . . . . . . . . . 12 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
58 unctb 9629 . . . . . . . . . . . 12 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴𝑦) ∪ (𝐴𝑧)) ≼ ω)
5957, 58eqbrtrid 5103 . . . . . . . . . . 11 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → (𝐴 ∖ (𝑦𝑧)) ≼ ω)
6059orcd 869 . . . . . . . . . 10 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
61 ineq1 4183 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
62 0in 4349 . . . . . . . . . . . 12 (∅ ∩ 𝑧) = ∅
6361, 62syl6eq 2874 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = ∅)
6463olcd 870 . . . . . . . . . 10 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
65 ineq2 4185 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
66 in0 4347 . . . . . . . . . . . 12 (𝑦 ∩ ∅) = ∅
6765, 66syl6eq 2874 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = ∅)
6867olcd 870 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
6960, 64, 68ccase2 1034 . . . . . . . . 9 ((((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7069ad2ant2l 744 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7156, 70jca 514 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7249, 22, 71syl2anb 599 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
73 difeq2 4095 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7473breq1d 5078 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦𝑧)) ≼ ω))
75 eqeq1 2827 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7674, 75orbi12d 915 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7776elrab 3682 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7872, 77sylibr 236 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
7978rgen2 3205 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}
8044, 79pm3.2i 473 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
81 pwexg 5281 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
82 rabexg 5236 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V)
83 istopg 21505 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8481, 82, 833syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8580, 84mpbiri 260 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top)
86 difeq2 4095 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
87 difid 4332 . . . . . . . 8 (𝐴𝐴) = ∅
8886, 87syl6eq 2874 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
8988breq1d 5078 . . . . . 6 (𝑥 = 𝐴 → ((𝐴𝑥) ≼ ω ↔ ∅ ≼ ω))
90 eqeq1 2827 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9189, 90orbi12d 915 . . . . 5 (𝑥 = 𝐴 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω ∨ 𝐴 = ∅)))
92 pwidg 4563 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
93 omex 9108 . . . . . . . 8 ω ∈ V
94930dom 8649 . . . . . . 7 ∅ ≼ ω
9594orci 861 . . . . . 6 (∅ ≼ ω ∨ 𝐴 = ∅)
9695a1i 11 . . . . 5 (𝐴𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅))
9791, 92, 96elrabd 3684 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
98 elssuni 4870 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
9997, 98syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
1008a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
10199, 100eqssd 3986 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
102 istopon 21522 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}))
10385, 101, 102sylanbrc 585 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1535   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   class class class wbr 5068  cfv 6357  ωcom 7582  cdom 8509  Topctop 21503  TopOnctopon 21520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-dju 9332  df-card 9370  df-top 21504  df-topon 21521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator