Step | Hyp | Ref
| Expression |
1 | | difeq2 4047 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ ∪ 𝑦)) |
2 | 1 | breq1d 5080 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
3 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → (𝑥 = ∅ ↔ ∪ 𝑦 =
∅)) |
4 | 2, 3 | orbi12d 915 |
. . . . . 6
⊢ (𝑥 = ∪
𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅))) |
5 | | uniss 4844 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
6 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 |
7 | | sspwuni 5025 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
8 | 6, 7 | mpbi 229 |
. . . . . . . 8
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴 |
9 | 5, 8 | sstrdi 3929 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ 𝐴) |
10 | | vuniex 7570 |
. . . . . . . 8
⊢ ∪ 𝑦
∈ V |
11 | 10 | elpw 4534 |
. . . . . . 7
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
12 | 9, 11 | sylibr 233 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ 𝒫 𝐴) |
13 | | uni0c 4865 |
. . . . . . . . . . 11
⊢ (∪ 𝑦 =
∅ ↔ ∀𝑧
∈ 𝑦 𝑧 = ∅) |
14 | 13 | notbii 319 |
. . . . . . . . . 10
⊢ (¬
∪ 𝑦 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
15 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
16 | 14, 15 | bitr4i 277 |
. . . . . . . . 9
⊢ (¬
∪ 𝑦 = ∅ ↔ ∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅) |
17 | | ssel2 3912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
18 | | difeq2 4047 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑧)) |
19 | 18 | breq1d 5080 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑧) ≼ ω)) |
20 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅)) |
21 | 19, 20 | orbi12d 915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
22 | 21 | elrab 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
23 | 17, 22 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
24 | 23 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) |
25 | 24 | ord 860 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ (𝐴 ∖ 𝑧) ≼ ω → 𝑧 = ∅)) |
26 | 25 | con1d 145 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 = ∅ → (𝐴 ∖ 𝑧) ≼ ω)) |
27 | 26 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ 𝑧) ≼ ω) |
28 | | ctex 8708 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑧) ≼ ω → (𝐴 ∖ 𝑧) ∈ V) |
29 | 28 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ 𝑧) ∈ V) |
30 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → 𝑧 ∈ 𝑦) |
31 | | elssuni 4868 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
32 | | sscon 4069 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ⊆ ∪ 𝑦
→ (𝐴 ∖ ∪ 𝑦)
⊆ (𝐴 ∖ 𝑧)) |
33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧)) |
34 | | ssdomg 8741 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑧) ∈ V → ((𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧))) |
35 | 29, 33, 34 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧)) |
36 | | domtr 8748 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ ∪ 𝑦)
≼ (𝐴 ∖ 𝑧) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
37 | 35, 36 | sylancom 587 |
. . . . . . . . . . 11
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
38 | 27, 37 | mpdan 683 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
39 | 38 | rexlimdva2 3215 |
. . . . . . . . 9
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
40 | 16, 39 | syl5bi 241 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ ∪ 𝑦 =
∅ → (𝐴 ∖
∪ 𝑦) ≼ ω)) |
41 | 40 | con1d 145 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 ∖ ∪ 𝑦) ≼ ω → ∪ 𝑦 =
∅)) |
42 | 41 | orrd 859 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅)) |
43 | 4, 12, 42 | elrabd 3619 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
44 | 43 | ax-gen 1799 |
. . . 4
⊢
∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
45 | | difeq2 4047 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
46 | 45 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑦) ≼ ω)) |
47 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
48 | 46, 47 | orbi12d 915 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
49 | 48 | elrab 3617 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
50 | | ssinss1 4168 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
51 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
52 | 51 | elpw 4534 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
53 | 51 | inex1 5236 |
. . . . . . . . . . 11
⊢ (𝑦 ∩ 𝑧) ∈ V |
54 | 53 | elpw 4534 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
55 | 50, 52, 54 | 3imtr4i 291 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
56 | 55 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
57 | | difindi 4212 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑦 ∩ 𝑧)) = ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) |
58 | | unctb 9892 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) ≼ ω) |
59 | 57, 58 | eqbrtrid 5105 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω) |
60 | 59 | orcd 869 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
61 | | ineq1 4136 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = (∅ ∩ 𝑧)) |
62 | | 0in 4324 |
. . . . . . . . . . . 12
⊢ (∅
∩ 𝑧) =
∅ |
63 | 61, 62 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
64 | 63 | olcd 870 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
65 | | ineq2 4137 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = (𝑦 ∩ ∅)) |
66 | | in0 4322 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ ∅) =
∅ |
67 | 65, 66 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
68 | 67 | olcd 870 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
69 | 60, 64, 68 | ccase2 1036 |
. . . . . . . . 9
⊢ ((((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
70 | 69 | ad2ant2l 742 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
71 | 56, 70 | jca 511 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
72 | 49, 22, 71 | syl2anb 597 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
73 | | difeq2 4047 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑦 ∩ 𝑧))) |
74 | 73 | breq1d 5080 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω)) |
75 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = ∅ ↔ (𝑦 ∩ 𝑧) = ∅)) |
76 | 74, 75 | orbi12d 915 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
77 | 76 | elrab 3617 |
. . . . . 6
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
78 | 72, 77 | sylibr 233 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
79 | 78 | rgen2 3126 |
. . . 4
⊢
∀𝑦 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} |
80 | 44, 79 | pm3.2i 470 |
. . 3
⊢
(∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
81 | | pwexg 5296 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
82 | | rabexg 5250 |
. . . 4
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V) |
83 | | istopg 21952 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
84 | 81, 82, 83 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
85 | 80, 84 | mpbiri 257 |
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top) |
86 | | difeq2 4047 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐴)) |
87 | | difid 4301 |
. . . . . . . 8
⊢ (𝐴 ∖ 𝐴) = ∅ |
88 | 86, 87 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = ∅) |
89 | 88 | breq1d 5080 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐴 ∖ 𝑥) ≼ ω ↔ ∅ ≼
ω)) |
90 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) |
91 | 89, 90 | orbi12d 915 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω
∨ 𝐴 =
∅))) |
92 | | pwidg 4552 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
93 | | omex 9331 |
. . . . . . . 8
⊢ ω
∈ V |
94 | 93 | 0dom 8843 |
. . . . . . 7
⊢ ∅
≼ ω |
95 | 94 | orci 861 |
. . . . . 6
⊢ (∅
≼ ω ∨ 𝐴 =
∅) |
96 | 95 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅)) |
97 | 91, 92, 96 | elrabd 3619 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
98 | | elssuni 4868 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
99 | 97, 98 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
100 | 8 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
101 | 99, 100 | eqssd 3934 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
102 | | istopon 21969 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = ∪
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)})) |
103 | 85, 101, 102 | sylanbrc 582 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) |