| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4cases | Structured version Visualization version GIF version | ||
| Description: Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| 4cases.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 4cases.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| 4cases.3 | ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜒) |
| 4cases.4 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 4cases | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4cases.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 4cases.3 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | pm2.61ian 811 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 4cases.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) | |
| 5 | 4cases.4 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | |
| 6 | 4, 5 | pm2.61ian 811 | . 2 ⊢ (¬ 𝜓 → 𝜒) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 4casesdan 1041 suc11reg 9638 hasheqf1oi 14374 fvprmselgcd1 17070 axlowdimlem15 28940 ax12eq 38964 ax12el 38965 cdleme27a 40391 |
| Copyright terms: Public domain | W3C validator |