Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cases Structured version   Visualization version   GIF version

Theorem 4cases 1034
 Description: Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003.)
Hypotheses
Ref Expression
4cases.1 ((𝜑𝜓) → 𝜒)
4cases.2 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
4cases.3 ((¬ 𝜑𝜓) → 𝜒)
4cases.4 ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)
Assertion
Ref Expression
4cases 𝜒

Proof of Theorem 4cases
StepHypRef Expression
1 4cases.1 . . 3 ((𝜑𝜓) → 𝜒)
2 4cases.3 . . 3 ((¬ 𝜑𝜓) → 𝜒)
31, 2pm2.61ian 810 . 2 (𝜓𝜒)
4 4cases.2 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
5 4cases.4 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)
64, 5pm2.61ian 810 . 2 𝜓𝜒)
73, 6pm2.61i 184 1 𝜒
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 209  df-an 399 This theorem is referenced by:  4casesdan  1035  suc11reg  9074  hasheqf1oi  13704  fvprmselgcd1  16373  axlowdimlem15  26734  ax12eq  36064  ax12el  36065  cdleme27a  37490
 Copyright terms: Public domain W3C validator