| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3729 intab 4942 dfac5 10082 grothpw 10779 grothpwex 10780 gcdcllem1 16469 gsmsymgreqlem2 19361 neindisj2 23010 tx1stc 23537 ufinffr 23816 ucnima 24168 frgr2wwlk1 30258 r19.29ffa 32400 sgn3da 32759 prmidl2 33412 fmcncfil 33921 bnj605 34897 bnj594 34902 bnj1174 34993 itg2gt0cn 37669 unirep 37708 ispridl2 38032 cnf1dd 38084 faosnf0.11b 43416 dfsucon 43512 unisnALT 44915 ax6e2ndALT 44919 ssinc 45081 ssdec 45082 fmul01 45578 dvnmptconst 45939 dvnmul 45941 2reu8i 47114 iccpartnel 47439 stgoldbwt 47777 sbgoldbalt 47782 bgoldbtbnd 47810 |
| Copyright terms: Public domain | W3C validator |