| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3732 intab 4945 dfac5 10089 grothpw 10786 grothpwex 10787 gcdcllem1 16476 gsmsymgreqlem2 19368 neindisj2 23017 tx1stc 23544 ufinffr 23823 ucnima 24175 frgr2wwlk1 30265 r19.29ffa 32407 sgn3da 32766 prmidl2 33419 fmcncfil 33928 bnj605 34904 bnj594 34909 bnj1174 35000 itg2gt0cn 37676 unirep 37715 ispridl2 38039 cnf1dd 38091 faosnf0.11b 43423 dfsucon 43519 unisnALT 44922 ax6e2ndALT 44926 ssinc 45088 ssdec 45089 fmul01 45585 dvnmptconst 45946 dvnmul 45948 2reu8i 47118 iccpartnel 47443 stgoldbwt 47781 sbgoldbalt 47786 bgoldbtbnd 47814 |
| Copyright terms: Public domain | W3C validator |