MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.35 Structured version   Visualization version   GIF version

Theorem pm3.35 802
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.)
Assertion
Ref Expression
pm3.35 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)

Proof of Theorem pm3.35
StepHypRef Expression
1 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
21imp 406 1 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ornld  1061  2reu5  3717  intab  4928  dfac5  10017  grothpw  10714  grothpwex  10715  gcdcllem1  16407  gsmsymgreqlem2  19341  neindisj2  23036  tx1stc  23563  ufinffr  23842  ucnima  24193  frgr2wwlk1  30304  r19.29ffa  32445  sgn3da  32812  prmidl2  33401  fmcncfil  33939  bnj605  34914  bnj594  34919  bnj1174  35010  itg2gt0cn  37714  unirep  37753  ispridl2  38077  cnf1dd  38129  faosnf0.11b  43459  dfsucon  43555  unisnALT  44957  ax6e2ndALT  44961  ssinc  45123  ssdec  45124  fmul01  45619  dvnmptconst  45978  dvnmul  45980  2reu8i  47143  iccpartnel  47468  stgoldbwt  47806  sbgoldbalt  47811  bgoldbtbnd  47839
  Copyright terms: Public domain W3C validator