![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ornld 1061 2reu5 3766 intab 4982 dfac5 10166 grothpw 10863 grothpwex 10864 gcdcllem1 16532 gsmsymgreqlem2 19463 neindisj2 23146 tx1stc 23673 ufinffr 23952 ucnima 24305 frgr2wwlk1 30357 r19.29ffa 32499 prmidl2 33448 fmcncfil 33891 sgn3da 34522 bnj605 34899 bnj594 34904 bnj1174 34995 itg2gt0cn 37661 unirep 37700 ispridl2 38024 cnf1dd 38076 faosnf0.11b 43416 dfsucon 43512 unisnALT 44923 ax6e2ndALT 44927 ssinc 45026 ssdec 45027 fmul01 45535 dvnmptconst 45896 dvnmul 45898 2reu8i 47062 iccpartnel 47362 stgoldbwt 47700 sbgoldbalt 47705 bgoldbtbnd 47733 |
Copyright terms: Public domain | W3C validator |