![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 396 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: ornld 1085 r19.29vva 3263 2reu5 3615 intab 4698 dfac5 9238 grothpw 9937 grothpwex 9938 gcdcllem1 15555 gsmsymgreqlem2 18162 neindisj2 21255 tx1stc 21781 ufinffr 22060 ucnima 22412 frgr2wwlk1 27677 r19.29ffa 29844 fmcncfil 30492 sgn3da 31119 bnj605 31493 bnj594 31498 bnj1174 31587 bj-ssbequ2 33148 itg2gt0cn 33952 unirep 33994 ispridl2 34323 cnf1dd 34378 unisnALT 39917 ax6e2ndALT 39921 ssinc 40018 ssdec 40019 fmul01 40551 dvnmptconst 40895 dvnmul 40897 iccpartnel 42209 stgoldbwt 42441 sbgoldbalt 42446 bgoldbtbnd 42474 |
Copyright terms: Public domain | W3C validator |