Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ornld 1058 2reu5 3688 intab 4906 dfac5 9815 grothpw 10513 grothpwex 10514 gcdcllem1 16134 gsmsymgreqlem2 18954 neindisj2 22182 tx1stc 22709 ufinffr 22988 ucnima 23341 frgr2wwlk1 28594 r19.29ffa 30723 prmidl2 31518 fmcncfil 31783 sgn3da 32408 bnj605 32787 bnj594 32792 bnj1174 32883 itg2gt0cn 35759 unirep 35798 ispridl2 36123 cnf1dd 36175 dfsucon 41028 unisnALT 42435 ax6e2ndALT 42439 ssinc 42526 ssdec 42527 fmul01 43011 dvnmptconst 43372 dvnmul 43374 2reu8i 44492 iccpartnel 44778 stgoldbwt 45116 sbgoldbalt 45121 bgoldbtbnd 45149 |
Copyright terms: Public domain | W3C validator |