| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3741 intab 4954 dfac5 10143 grothpw 10840 grothpwex 10841 gcdcllem1 16518 gsmsymgreqlem2 19412 neindisj2 23061 tx1stc 23588 ufinffr 23867 ucnima 24219 frgr2wwlk1 30310 r19.29ffa 32452 sgn3da 32813 prmidl2 33456 fmcncfil 33962 bnj605 34938 bnj594 34943 bnj1174 35034 itg2gt0cn 37699 unirep 37738 ispridl2 38062 cnf1dd 38114 faosnf0.11b 43451 dfsucon 43547 unisnALT 44950 ax6e2ndALT 44954 ssinc 45111 ssdec 45112 fmul01 45609 dvnmptconst 45970 dvnmul 45972 2reu8i 47142 iccpartnel 47452 stgoldbwt 47790 sbgoldbalt 47795 bgoldbtbnd 47823 |
| Copyright terms: Public domain | W3C validator |