![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ornld 1062 2reu5 3780 intab 5002 dfac5 10198 grothpw 10895 grothpwex 10896 gcdcllem1 16545 gsmsymgreqlem2 19473 neindisj2 23152 tx1stc 23679 ufinffr 23958 ucnima 24311 frgr2wwlk1 30361 r19.29ffa 32500 prmidl2 33434 fmcncfil 33877 sgn3da 34506 bnj605 34883 bnj594 34888 bnj1174 34979 itg2gt0cn 37635 unirep 37674 ispridl2 37998 cnf1dd 38050 faosnf0.11b 43389 dfsucon 43485 unisnALT 44897 ax6e2ndALT 44901 ssinc 44989 ssdec 44990 fmul01 45501 dvnmptconst 45862 dvnmul 45864 2reu8i 47028 iccpartnel 47312 stgoldbwt 47650 sbgoldbalt 47655 bgoldbtbnd 47683 |
Copyright terms: Public domain | W3C validator |