| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3717 intab 4928 dfac5 10017 grothpw 10714 grothpwex 10715 gcdcllem1 16407 gsmsymgreqlem2 19341 neindisj2 23036 tx1stc 23563 ufinffr 23842 ucnima 24193 frgr2wwlk1 30304 r19.29ffa 32445 sgn3da 32812 prmidl2 33401 fmcncfil 33939 bnj605 34914 bnj594 34919 bnj1174 35010 itg2gt0cn 37714 unirep 37753 ispridl2 38077 cnf1dd 38129 faosnf0.11b 43459 dfsucon 43555 unisnALT 44957 ax6e2ndALT 44961 ssinc 45123 ssdec 45124 fmul01 45619 dvnmptconst 45978 dvnmul 45980 2reu8i 47143 iccpartnel 47468 stgoldbwt 47806 sbgoldbalt 47811 bgoldbtbnd 47839 |
| Copyright terms: Public domain | W3C validator |