| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3720 intab 4931 dfac5 10042 grothpw 10739 grothpwex 10740 gcdcllem1 16428 gsmsymgreqlem2 19328 neindisj2 23026 tx1stc 23553 ufinffr 23832 ucnima 24184 frgr2wwlk1 30291 r19.29ffa 32433 sgn3da 32792 prmidl2 33388 fmcncfil 33897 bnj605 34873 bnj594 34878 bnj1174 34969 itg2gt0cn 37654 unirep 37693 ispridl2 38017 cnf1dd 38069 faosnf0.11b 43400 dfsucon 43496 unisnALT 44899 ax6e2ndALT 44903 ssinc 45065 ssdec 45066 fmul01 45562 dvnmptconst 45923 dvnmul 45925 2reu8i 47098 iccpartnel 47423 stgoldbwt 47761 sbgoldbalt 47766 bgoldbtbnd 47794 |
| Copyright terms: Public domain | W3C validator |