| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ornld 1061 2reu5 3713 intab 4928 dfac5 10027 grothpw 10724 grothpwex 10725 gcdcllem1 16412 gsmsymgreqlem2 19345 neindisj2 23039 tx1stc 23566 ufinffr 23845 ucnima 24196 frgr2wwlk1 30311 r19.29ffa 32452 sgn3da 32822 prmidl2 33413 fmcncfil 33965 bnj605 34940 bnj594 34945 bnj1174 35036 itg2gt0cn 37735 unirep 37774 ispridl2 38098 cnf1dd 38150 faosnf0.11b 43544 dfsucon 43640 unisnALT 45042 ax6e2ndALT 45046 ssinc 45208 ssdec 45209 fmul01 45704 dvnmptconst 46063 dvnmul 46065 2reu8i 47237 iccpartnel 47562 stgoldbwt 47900 sbgoldbalt 47905 bgoldbtbnd 47933 |
| Copyright terms: Public domain | W3C validator |