Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bi | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *4.12 of [WhiteheadRussell] p. 117. (Contributed by NM, 15-Apr-1995.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) |
Ref | Expression |
---|---|
con2bi | ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi 322 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (¬ 𝜑 ↔ ¬ ¬ 𝜓)) | |
2 | notnotb 318 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
3 | 2 | bibi2i 341 | . 2 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ ¬ 𝜓)) |
4 | bicom 225 | . 2 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) | |
5 | 1, 3, 4 | 3bitr2i 302 | 1 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: con2bid 358 nbbn 388 |
Copyright terms: Public domain | W3C validator |