MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitr3 Structured version   Visualization version   GIF version

Theorem bitr3 353
Description: Closed nested implication form of bitr3i 277. Derived automatically from bitr3VD 43138. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
bitr3 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem bitr3
StepHypRef Expression
1 bibi1 352 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
21biimpd 228 1 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  sumodd  16271  3orbi123VD  43139  sbc3orgVD  43140  trsbcVD  43166  csbrngVD  43185  e2ebindVD  43201  e2ebindALT  43218
  Copyright terms: Public domain W3C validator