|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bitr3 | Structured version Visualization version GIF version | ||
| Description: Closed nested implication form of bitr3i 277. Derived automatically from bitr3VD 44869. (Contributed by Alan Sare, 31-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| bitr3 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bibi1 351 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
| 2 | 1 | biimpd 229 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: sumodd 16425 3orbi123VD 44870 sbc3orgVD 44871 trsbcVD 44897 csbrngVD 44916 e2ebindVD 44932 e2ebindALT 44949 | 
| Copyright terms: Public domain | W3C validator |