| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3 | Structured version Visualization version GIF version | ||
| Description: Closed nested implication form of bitr3i 277. Derived automatically from bitr3VD 44831. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| bitr3 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi1 351 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
| 2 | 1 | biimpd 229 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sumodd 16364 3orbi123VD 44832 sbc3orgVD 44833 trsbcVD 44859 csbrngVD 44878 e2ebindVD 44894 e2ebindALT 44911 |
| Copyright terms: Public domain | W3C validator |