MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cgrg Structured version   Visualization version   GIF version

Definition df-cgrg 27751
Description: Define the relation of congruence between shapes. Definition 4.4 of [Schwabhauser] p. 35. A "shape" is a finite sequence of points, and a triangle can be represented as a shape with three points. Two shapes are congruent if all corresponding segments between all corresponding points are congruent.

Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28048 and expanded in iscgra 28049. This does not mean our system is weaker; dfcgrg2 28103 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 27760, cgr3simp2 27761, cgr3simp3 27762, cgrcgra 28061, and permutation laws such as cgr3swap12 27763 and dfcgrg2 28103.

Ideally, we would define this for functions of any set, but we will use words (see df-word 14461) in most cases.

(Contributed by Thierry Arnoux, 3-Apr-2019.)

Assertion
Ref Expression
df-cgrg cgrG = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))})
Distinct variable group:   π‘Ž,𝑏,𝑔,𝑖,𝑗

Detailed syntax breakdown of Definition df-cgrg
StepHypRef Expression
1 ccgrg 27750 . 2 class cgrG
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 va . . . . . . . 8 setvar π‘Ž
54cv 1540 . . . . . . 7 class π‘Ž
62cv 1540 . . . . . . . . 9 class 𝑔
7 cbs 17140 . . . . . . . . 9 class Base
86, 7cfv 6540 . . . . . . . 8 class (Baseβ€˜π‘”)
9 cr 11105 . . . . . . . 8 class ℝ
10 cpm 8817 . . . . . . . 8 class ↑pm
118, 9, 10co 7405 . . . . . . 7 class ((Baseβ€˜π‘”) ↑pm ℝ)
125, 11wcel 2106 . . . . . 6 wff π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ)
13 vb . . . . . . . 8 setvar 𝑏
1413cv 1540 . . . . . . 7 class 𝑏
1514, 11wcel 2106 . . . . . 6 wff 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)
1612, 15wa 396 . . . . 5 wff (π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ))
175cdm 5675 . . . . . . 7 class dom π‘Ž
1814cdm 5675 . . . . . . 7 class dom 𝑏
1917, 18wceq 1541 . . . . . 6 wff dom π‘Ž = dom 𝑏
20 vi . . . . . . . . . . . 12 setvar 𝑖
2120cv 1540 . . . . . . . . . . 11 class 𝑖
2221, 5cfv 6540 . . . . . . . . . 10 class (π‘Žβ€˜π‘–)
23 vj . . . . . . . . . . . 12 setvar 𝑗
2423cv 1540 . . . . . . . . . . 11 class 𝑗
2524, 5cfv 6540 . . . . . . . . . 10 class (π‘Žβ€˜π‘—)
26 cds 17202 . . . . . . . . . . 11 class dist
276, 26cfv 6540 . . . . . . . . . 10 class (distβ€˜π‘”)
2822, 25, 27co 7405 . . . . . . . . 9 class ((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—))
2921, 14cfv 6540 . . . . . . . . . 10 class (π‘β€˜π‘–)
3024, 14cfv 6540 . . . . . . . . . 10 class (π‘β€˜π‘—)
3129, 30, 27co 7405 . . . . . . . . 9 class ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))
3228, 31wceq 1541 . . . . . . . 8 wff ((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))
3332, 23, 17wral 3061 . . . . . . 7 wff βˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))
3433, 20, 17wral 3061 . . . . . 6 wff βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))
3519, 34wa 396 . . . . 5 wff (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—)))
3616, 35wa 396 . . . 4 wff ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))
3736, 4, 13copab 5209 . . 3 class {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))}
382, 3, 37cmpt 5230 . 2 class (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))})
391, 38wceq 1541 1 wff cgrG = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))})
Colors of variables: wff setvar class
This definition is referenced by:  iscgrg  27752  ercgrg  27757
  Copyright terms: Public domain W3C validator