MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cgrg Structured version   Visualization version   GIF version

Definition df-cgrg 28445
Description: Define the relation of congruence between shapes. Definition 4.4 of [Schwabhauser] p. 35. A "shape" is a finite sequence of points, and a triangle can be represented as a shape with three points. Two shapes are congruent if all corresponding segments between all corresponding points are congruent.

Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28742 and expanded in iscgra 28743. This does not mean our system is weaker; dfcgrg2 28797 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 28454, cgr3simp2 28455, cgr3simp3 28456, cgrcgra 28755, and permutation laws such as cgr3swap12 28457 and dfcgrg2 28797.

Ideally, we would define this for functions of any set, but we will use words (see df-word 14486) in most cases.

(Contributed by Thierry Arnoux, 3-Apr-2019.)

Assertion
Ref Expression
df-cgrg cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Distinct variable group:   𝑎,𝑏,𝑔,𝑖,𝑗

Detailed syntax breakdown of Definition df-cgrg
StepHypRef Expression
1 ccgrg 28444 . 2 class cgrG
2 vg . . 3 setvar 𝑔
3 cvv 3450 . . 3 class V
4 va . . . . . . . 8 setvar 𝑎
54cv 1539 . . . . . . 7 class 𝑎
62cv 1539 . . . . . . . . 9 class 𝑔
7 cbs 17186 . . . . . . . . 9 class Base
86, 7cfv 6514 . . . . . . . 8 class (Base‘𝑔)
9 cr 11074 . . . . . . . 8 class
10 cpm 8803 . . . . . . . 8 class pm
118, 9, 10co 7390 . . . . . . 7 class ((Base‘𝑔) ↑pm ℝ)
125, 11wcel 2109 . . . . . 6 wff 𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
13 vb . . . . . . . 8 setvar 𝑏
1413cv 1539 . . . . . . 7 class 𝑏
1514, 11wcel 2109 . . . . . 6 wff 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)
1612, 15wa 395 . . . . 5 wff (𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
175cdm 5641 . . . . . . 7 class dom 𝑎
1814cdm 5641 . . . . . . 7 class dom 𝑏
1917, 18wceq 1540 . . . . . 6 wff dom 𝑎 = dom 𝑏
20 vi . . . . . . . . . . . 12 setvar 𝑖
2120cv 1539 . . . . . . . . . . 11 class 𝑖
2221, 5cfv 6514 . . . . . . . . . 10 class (𝑎𝑖)
23 vj . . . . . . . . . . . 12 setvar 𝑗
2423cv 1539 . . . . . . . . . . 11 class 𝑗
2524, 5cfv 6514 . . . . . . . . . 10 class (𝑎𝑗)
26 cds 17236 . . . . . . . . . . 11 class dist
276, 26cfv 6514 . . . . . . . . . 10 class (dist‘𝑔)
2822, 25, 27co 7390 . . . . . . . . 9 class ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗))
2921, 14cfv 6514 . . . . . . . . . 10 class (𝑏𝑖)
3024, 14cfv 6514 . . . . . . . . . 10 class (𝑏𝑗)
3129, 30, 27co 7390 . . . . . . . . 9 class ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3228, 31wceq 1540 . . . . . . . 8 wff ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3332, 23, 17wral 3045 . . . . . . 7 wff 𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3433, 20, 17wral 3045 . . . . . 6 wff 𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3519, 34wa 395 . . . . 5 wff (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)))
3616, 35wa 395 . . . 4 wff ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))
3736, 4, 13copab 5172 . . 3 class {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))}
382, 3, 37cmpt 5191 . 2 class (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
391, 38wceq 1540 1 wff cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Colors of variables: wff setvar class
This definition is referenced by:  iscgrg  28446  ercgrg  28451
  Copyright terms: Public domain W3C validator