Step | Hyp | Ref
| Expression |
1 | | ccgrg 27750 |
. 2
class
cgrG |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | va |
. . . . . . . 8
setvar π |
5 | 4 | cv 1540 |
. . . . . . 7
class π |
6 | 2 | cv 1540 |
. . . . . . . . 9
class π |
7 | | cbs 17140 |
. . . . . . . . 9
class
Base |
8 | 6, 7 | cfv 6540 |
. . . . . . . 8
class
(Baseβπ) |
9 | | cr 11105 |
. . . . . . . 8
class
β |
10 | | cpm 8817 |
. . . . . . . 8
class
βpm |
11 | 8, 9, 10 | co 7405 |
. . . . . . 7
class
((Baseβπ)
βpm β) |
12 | 5, 11 | wcel 2106 |
. . . . . 6
wff π β ((Baseβπ) βpm
β) |
13 | | vb |
. . . . . . . 8
setvar π |
14 | 13 | cv 1540 |
. . . . . . 7
class π |
15 | 14, 11 | wcel 2106 |
. . . . . 6
wff π β ((Baseβπ) βpm
β) |
16 | 12, 15 | wa 396 |
. . . . 5
wff (π β ((Baseβπ) βpm β)
β§ π β
((Baseβπ)
βpm β)) |
17 | 5 | cdm 5675 |
. . . . . . 7
class dom π |
18 | 14 | cdm 5675 |
. . . . . . 7
class dom π |
19 | 17, 18 | wceq 1541 |
. . . . . 6
wff dom π = dom π |
20 | | vi |
. . . . . . . . . . . 12
setvar π |
21 | 20 | cv 1540 |
. . . . . . . . . . 11
class π |
22 | 21, 5 | cfv 6540 |
. . . . . . . . . 10
class (πβπ) |
23 | | vj |
. . . . . . . . . . . 12
setvar π |
24 | 23 | cv 1540 |
. . . . . . . . . . 11
class π |
25 | 24, 5 | cfv 6540 |
. . . . . . . . . 10
class (πβπ) |
26 | | cds 17202 |
. . . . . . . . . . 11
class
dist |
27 | 6, 26 | cfv 6540 |
. . . . . . . . . 10
class
(distβπ) |
28 | 22, 25, 27 | co 7405 |
. . . . . . . . 9
class ((πβπ)(distβπ)(πβπ)) |
29 | 21, 14 | cfv 6540 |
. . . . . . . . . 10
class (πβπ) |
30 | 24, 14 | cfv 6540 |
. . . . . . . . . 10
class (πβπ) |
31 | 29, 30, 27 | co 7405 |
. . . . . . . . 9
class ((πβπ)(distβπ)(πβπ)) |
32 | 28, 31 | wceq 1541 |
. . . . . . . 8
wff ((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ)) |
33 | 32, 23, 17 | wral 3061 |
. . . . . . 7
wff
βπ β dom
π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ)) |
34 | 33, 20, 17 | wral 3061 |
. . . . . 6
wff
βπ β dom
πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ)) |
35 | 19, 34 | wa 396 |
. . . . 5
wff (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))) |
36 | 16, 35 | wa 396 |
. . . 4
wff ((π β ((Baseβπ) βpm β)
β§ π β
((Baseβπ)
βpm β)) β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ)))) |
37 | 36, 4, 13 | copab 5209 |
. . 3
class
{β¨π, πβ© β£ ((π β ((Baseβπ) βpm β)
β§ π β
((Baseβπ)
βpm β)) β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))))} |
38 | 2, 3, 37 | cmpt 5230 |
. 2
class (π β V β¦ {β¨π, πβ© β£ ((π β ((Baseβπ) βpm β) β§ π β ((Baseβπ) βpm β))
β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))))}) |
39 | 1, 38 | wceq 1541 |
1
wff cgrG =
(π β V β¦
{β¨π, πβ© β£ ((π β ((Baseβπ) βpm β)
β§ π β
((Baseβπ)
βpm β)) β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))))}) |