MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cgrg Structured version   Visualization version   GIF version

Definition df-cgrg 28492
Description: Define the relation of congruence between shapes. Definition 4.4 of [Schwabhauser] p. 35. A "shape" is a finite sequence of points, and a triangle can be represented as a shape with three points. Two shapes are congruent if all corresponding segments between all corresponding points are congruent.

Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28789 and expanded in iscgra 28790. This does not mean our system is weaker; dfcgrg2 28844 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 28501, cgr3simp2 28502, cgr3simp3 28503, cgrcgra 28802, and permutation laws such as cgr3swap12 28504 and dfcgrg2 28844.

Ideally, we would define this for functions of any set, but we will use words (see df-word 14425) in most cases.

(Contributed by Thierry Arnoux, 3-Apr-2019.)

Assertion
Ref Expression
df-cgrg cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Distinct variable group:   𝑎,𝑏,𝑔,𝑖,𝑗

Detailed syntax breakdown of Definition df-cgrg
StepHypRef Expression
1 ccgrg 28491 . 2 class cgrG
2 vg . . 3 setvar 𝑔
3 cvv 3437 . . 3 class V
4 va . . . . . . . 8 setvar 𝑎
54cv 1540 . . . . . . 7 class 𝑎
62cv 1540 . . . . . . . . 9 class 𝑔
7 cbs 17124 . . . . . . . . 9 class Base
86, 7cfv 6488 . . . . . . . 8 class (Base‘𝑔)
9 cr 11014 . . . . . . . 8 class
10 cpm 8759 . . . . . . . 8 class pm
118, 9, 10co 7354 . . . . . . 7 class ((Base‘𝑔) ↑pm ℝ)
125, 11wcel 2113 . . . . . 6 wff 𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
13 vb . . . . . . . 8 setvar 𝑏
1413cv 1540 . . . . . . 7 class 𝑏
1514, 11wcel 2113 . . . . . 6 wff 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)
1612, 15wa 395 . . . . 5 wff (𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
175cdm 5621 . . . . . . 7 class dom 𝑎
1814cdm 5621 . . . . . . 7 class dom 𝑏
1917, 18wceq 1541 . . . . . 6 wff dom 𝑎 = dom 𝑏
20 vi . . . . . . . . . . . 12 setvar 𝑖
2120cv 1540 . . . . . . . . . . 11 class 𝑖
2221, 5cfv 6488 . . . . . . . . . 10 class (𝑎𝑖)
23 vj . . . . . . . . . . . 12 setvar 𝑗
2423cv 1540 . . . . . . . . . . 11 class 𝑗
2524, 5cfv 6488 . . . . . . . . . 10 class (𝑎𝑗)
26 cds 17174 . . . . . . . . . . 11 class dist
276, 26cfv 6488 . . . . . . . . . 10 class (dist‘𝑔)
2822, 25, 27co 7354 . . . . . . . . 9 class ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗))
2921, 14cfv 6488 . . . . . . . . . 10 class (𝑏𝑖)
3024, 14cfv 6488 . . . . . . . . . 10 class (𝑏𝑗)
3129, 30, 27co 7354 . . . . . . . . 9 class ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3228, 31wceq 1541 . . . . . . . 8 wff ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3332, 23, 17wral 3048 . . . . . . 7 wff 𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3433, 20, 17wral 3048 . . . . . 6 wff 𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3519, 34wa 395 . . . . 5 wff (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)))
3616, 35wa 395 . . . 4 wff ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))
3736, 4, 13copab 5157 . . 3 class {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))}
382, 3, 37cmpt 5176 . 2 class (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
391, 38wceq 1541 1 wff cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Colors of variables: wff setvar class
This definition is referenced by:  iscgrg  28493  ercgrg  28498
  Copyright terms: Public domain W3C validator