Detailed syntax breakdown of Definition df-cgrg
Step | Hyp | Ref
| Expression |
1 | | ccgrg 26775 |
. 2
class
cgrG |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | va |
. . . . . . . 8
setvar 𝑎 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑎 |
6 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
7 | | cbs 16840 |
. . . . . . . . 9
class
Base |
8 | 6, 7 | cfv 6418 |
. . . . . . . 8
class
(Base‘𝑔) |
9 | | cr 10801 |
. . . . . . . 8
class
ℝ |
10 | | cpm 8574 |
. . . . . . . 8
class
↑pm |
11 | 8, 9, 10 | co 7255 |
. . . . . . 7
class
((Base‘𝑔)
↑pm ℝ) |
12 | 5, 11 | wcel 2108 |
. . . . . 6
wff 𝑎 ∈ ((Base‘𝑔) ↑pm
ℝ) |
13 | | vb |
. . . . . . . 8
setvar 𝑏 |
14 | 13 | cv 1538 |
. . . . . . 7
class 𝑏 |
15 | 14, 11 | wcel 2108 |
. . . . . 6
wff 𝑏 ∈ ((Base‘𝑔) ↑pm
ℝ) |
16 | 12, 15 | wa 395 |
. . . . 5
wff (𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
∧ 𝑏 ∈
((Base‘𝑔)
↑pm ℝ)) |
17 | 5 | cdm 5580 |
. . . . . . 7
class dom 𝑎 |
18 | 14 | cdm 5580 |
. . . . . . 7
class dom 𝑏 |
19 | 17, 18 | wceq 1539 |
. . . . . 6
wff dom 𝑎 = dom 𝑏 |
20 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
21 | 20 | cv 1538 |
. . . . . . . . . . 11
class 𝑖 |
22 | 21, 5 | cfv 6418 |
. . . . . . . . . 10
class (𝑎‘𝑖) |
23 | | vj |
. . . . . . . . . . . 12
setvar 𝑗 |
24 | 23 | cv 1538 |
. . . . . . . . . . 11
class 𝑗 |
25 | 24, 5 | cfv 6418 |
. . . . . . . . . 10
class (𝑎‘𝑗) |
26 | | cds 16897 |
. . . . . . . . . . 11
class
dist |
27 | 6, 26 | cfv 6418 |
. . . . . . . . . 10
class
(dist‘𝑔) |
28 | 22, 25, 27 | co 7255 |
. . . . . . . . 9
class ((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) |
29 | 21, 14 | cfv 6418 |
. . . . . . . . . 10
class (𝑏‘𝑖) |
30 | 24, 14 | cfv 6418 |
. . . . . . . . . 10
class (𝑏‘𝑗) |
31 | 29, 30, 27 | co 7255 |
. . . . . . . . 9
class ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗)) |
32 | 28, 31 | wceq 1539 |
. . . . . . . 8
wff ((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗)) |
33 | 32, 23, 17 | wral 3063 |
. . . . . . 7
wff
∀𝑗 ∈ dom
𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗)) |
34 | 33, 20, 17 | wral 3063 |
. . . . . 6
wff
∀𝑖 ∈ dom
𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗)) |
35 | 19, 34 | wa 395 |
. . . . 5
wff (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))) |
36 | 16, 35 | wa 395 |
. . . 4
wff ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
∧ 𝑏 ∈
((Base‘𝑔)
↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗)))) |
37 | 36, 4, 13 | copab 5132 |
. . 3
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
∧ 𝑏 ∈
((Base‘𝑔)
↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))} |
38 | 2, 3, 37 | cmpt 5153 |
. 2
class (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))}) |
39 | 1, 38 | wceq 1539 |
1
wff cgrG =
(𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
∧ 𝑏 ∈
((Base‘𝑔)
↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))}) |