MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cgrg Structured version   Visualization version   GIF version

Definition df-cgrg 28438
Description: Define the relation of congruence between shapes. Definition 4.4 of [Schwabhauser] p. 35. A "shape" is a finite sequence of points, and a triangle can be represented as a shape with three points. Two shapes are congruent if all corresponding segments between all corresponding points are congruent.

Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28735 and expanded in iscgra 28736. This does not mean our system is weaker; dfcgrg2 28790 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 28447, cgr3simp2 28448, cgr3simp3 28449, cgrcgra 28748, and permutation laws such as cgr3swap12 28450 and dfcgrg2 28790.

Ideally, we would define this for functions of any set, but we will use words (see df-word 14479) in most cases.

(Contributed by Thierry Arnoux, 3-Apr-2019.)

Assertion
Ref Expression
df-cgrg cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Distinct variable group:   𝑎,𝑏,𝑔,𝑖,𝑗

Detailed syntax breakdown of Definition df-cgrg
StepHypRef Expression
1 ccgrg 28437 . 2 class cgrG
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
4 va . . . . . . . 8 setvar 𝑎
54cv 1539 . . . . . . 7 class 𝑎
62cv 1539 . . . . . . . . 9 class 𝑔
7 cbs 17179 . . . . . . . . 9 class Base
86, 7cfv 6511 . . . . . . . 8 class (Base‘𝑔)
9 cr 11067 . . . . . . . 8 class
10 cpm 8800 . . . . . . . 8 class pm
118, 9, 10co 7387 . . . . . . 7 class ((Base‘𝑔) ↑pm ℝ)
125, 11wcel 2109 . . . . . 6 wff 𝑎 ∈ ((Base‘𝑔) ↑pm ℝ)
13 vb . . . . . . . 8 setvar 𝑏
1413cv 1539 . . . . . . 7 class 𝑏
1514, 11wcel 2109 . . . . . 6 wff 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)
1612, 15wa 395 . . . . 5 wff (𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
175cdm 5638 . . . . . . 7 class dom 𝑎
1814cdm 5638 . . . . . . 7 class dom 𝑏
1917, 18wceq 1540 . . . . . 6 wff dom 𝑎 = dom 𝑏
20 vi . . . . . . . . . . . 12 setvar 𝑖
2120cv 1539 . . . . . . . . . . 11 class 𝑖
2221, 5cfv 6511 . . . . . . . . . 10 class (𝑎𝑖)
23 vj . . . . . . . . . . . 12 setvar 𝑗
2423cv 1539 . . . . . . . . . . 11 class 𝑗
2524, 5cfv 6511 . . . . . . . . . 10 class (𝑎𝑗)
26 cds 17229 . . . . . . . . . . 11 class dist
276, 26cfv 6511 . . . . . . . . . 10 class (dist‘𝑔)
2822, 25, 27co 7387 . . . . . . . . 9 class ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗))
2921, 14cfv 6511 . . . . . . . . . 10 class (𝑏𝑖)
3024, 14cfv 6511 . . . . . . . . . 10 class (𝑏𝑗)
3129, 30, 27co 7387 . . . . . . . . 9 class ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3228, 31wceq 1540 . . . . . . . 8 wff ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3332, 23, 17wral 3044 . . . . . . 7 wff 𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3433, 20, 17wral 3044 . . . . . 6 wff 𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))
3519, 34wa 395 . . . . 5 wff (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)))
3616, 35wa 395 . . . 4 wff ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))
3736, 4, 13copab 5169 . . 3 class {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))}
382, 3, 37cmpt 5188 . 2 class (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
391, 38wceq 1540 1 wff cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
Colors of variables: wff setvar class
This definition is referenced by:  iscgrg  28439  ercgrg  28444
  Copyright terms: Public domain W3C validator